Abstract
This paper presents an intuitionistic proof of a statement which under a classical reading is logically equivalent to Gödel’s completeness theorem for classical predicate logic.
Similar content being viewed by others
References
Friedman H.M.: ‘Intuitionistic completeness of Heiting’s predicate calculus’. Notices of the American Mathematical Society 22, A648 (1975)
Gödel K.: ‘Die Vollständigkeit der Axiome des logischen Funktionenkalküls’. Monatshefte für Mathematik und Physik 37, 349–360 (1930)
Krivine J.-L.: ‘Une preuve formelle et intuitionniste du théorème de complétude de la logique classique’. Bulletin of Symbolic Logic 2(4), 405–421 (1996)
Troelstra, A.S., and D. van Dalen, Constructivism in Mathematics, vol. II, North-Holland, 1988.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Krivtsov, V.N. An Intuitionistic Completeness Theorem for Classical Predicate Logic. Stud Logica 96, 109–115 (2010). https://doi.org/10.1007/s11225-010-9273-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-010-9273-3