Skip to main content
Log in

An Intuitionistic Completeness Theorem for Classical Predicate Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

This paper presents an intuitionistic proof of a statement which under a classical reading is logically equivalent to Gödel’s completeness theorem for classical predicate logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman H.M.: ‘Intuitionistic completeness of Heiting’s predicate calculus’. Notices of the American Mathematical Society 22, A648 (1975)

    Google Scholar 

  2. Gödel K.: ‘Die Vollständigkeit der Axiome des logischen Funktionenkalküls’. Monatshefte für Mathematik und Physik 37, 349–360 (1930)

    Article  Google Scholar 

  3. Krivine J.-L.: ‘Une preuve formelle et intuitionniste du théorème de complétude de la logique classique’. Bulletin of Symbolic Logic 2(4), 405–421 (1996)

    Article  Google Scholar 

  4. Troelstra, A.S., and D. van Dalen, Constructivism in Mathematics, vol. II, North-Holland, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor N. Krivtsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivtsov, V.N. An Intuitionistic Completeness Theorem for Classical Predicate Logic. Stud Logica 96, 109–115 (2010). https://doi.org/10.1007/s11225-010-9273-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-010-9273-3

Keywords

Navigation