Skip to main content

On the Proof-Theory of two Formalisations of Modal First-Order Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We introduce a Gentzen-style modal predicate logic and prove the cut-elimination theorem for it. This sequent calculus of cut-free proofs is chosen as a proxy to develop the proof-theory of the logics introduced in [14, 15, 4]. We present syntactic proofs for all the metatheoretical results that were proved model-theoretically in loc. cit. and moreover prove that the form of weak reflection proved in these papers is as strong as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron A.: ‘On modal systems having arithmetical interpretations’. J. of Symb. Logic 49(3), 935–942 (1984)

    Article  Google Scholar 

  2. Enderton H.B.: A mathematical introduction to logic. Academic Press, New York (1972)

    Google Scholar 

  3. Gödel, K., Eine Interpretation des intuitionistischen Aussagenkalküls, vol. 4, Ergebnisse eines mathematischen Kolloquiums, 1933, pp. 39–40.

  4. Kibedi F., Tourlakis G.: ‘A modal extension of weak generalisation predicate logic’. Logic Journal of the IGPL 14(4), 591–621 (2006)

    Article  Google Scholar 

  5. Kleene S.C.: Introduction to metamathematics. Noordhoff, Groningen (1952)

    Google Scholar 

  6. Leivant D.: ‘On the proof theory of the modal logic for arithmetic provability’. Journal of Symbolic Logic 46(3), 531–538 (1981)

    Article  Google Scholar 

  7. Mendelson E.: Introduction to mathematical logic, 3rd edition. Wadsworth & Brooks, Monterey California (1987)

    Google Scholar 

  8. Sambin G., Valentini S.: ‘A Modal Sequent Calculus for a Fragment of Arithmetic’. Studia Logica 39(2/3), 245–256 (1980)

    Article  Google Scholar 

  9. Sambin G., Valentini S.: ‘The Modal Logic of Provability. The Sequential Approach’. Journal of Philosophical Logic 11(3), 311–342 (1982)

    Google Scholar 

  10. Schütte K.: Proof Theory. Springer-Verlag, New York (1977)

    Google Scholar 

  11. Shoenfield J.R.: Mathematical Logic. Addison-Wesley, Reading, Massachusetts (1967)

    Google Scholar 

  12. Takeuti G.: Proof Theory. North-Holland, New York (1975)

    Google Scholar 

  13. Tourlakis G.: Lectures in Logic and Set Theory; Volume 1: Mathematical Logic. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Tourlakis G., Kibedi F.: ‘A modal extension of first order classical logic–Part I’. BSL 32(4), 165–178 (2003)

    Google Scholar 

  15. Tourlakis G., Kibedi F.: ‘A modal extension of first order classical logic–Part II’. BSL 33(1), 1–10 (2004)

    Google Scholar 

  16. Valentini S.: ‘The Modal Logic of Provability: Cut-Elimination’. Journal of Philosophical Logic 12(4), 471–476 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Tourlakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, Y., Tourlakis, G. On the Proof-Theory of two Formalisations of Modal First-Order Logic. Stud Logica 96, 349–373 (2010). https://doi.org/10.1007/s11225-010-9294-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-010-9294-y

Keywords