Skip to main content
Log in

An Axiomatisation of a Pure Calculus of Names

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

A calculus of names is a logical theory describing relations between names. By a pure calculus of names we mean a quantifier-free formulation of such a theory, based on classical propositional calculus. An axiomatisation of a pure calculus of names is presented and its completeness is discussed. It is shown that the axiomatisation is complete in three different ways: with respect to a set theoretical model, with respect to Leśniewski’s Ontology and in a sense defined with the use of axiomatic rejection. The independence of axioms is proved. A decision procedure based on syntactic transformations and models defined in the domain of only two members is defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dywan Z.: Denotacja u Arystotelesa i Fregego. In: Omyła, M. (ed.) Szkice z semiotyki i ontologii sytuacji. pp. 11–28. Biblioteka Myśli Semiotycznej, Polskie Towarzystwo Semiotyczne, Warszawa (1991)

    Google Scholar 

  2. Hodges, W., Logical features of Horn Clauses. Oxford University Press, Inc., New York, NY, USA, 1993, pp. 449–503.

  3. Ishimoto A.: A propositional fragment of Lesniewski’s ontology. Studia Logica 36, 285–299 (1977)

    Article  Google Scholar 

  4. Klima, G., Existence and reference in medieval logic. In A. Hieke and E. Morscher (eds.), New Essays in Free Logic. Kluwer, 2001, pp. 197–226.

  5. Kulicki, P., The use of axiomatic rejection. In T. Childers (ed.), The Logica Yearbook 1999. Filosofia, Prague, 2000, pp. 109–117.

  6. Kulicki P.: Remarks on axiomatic rejection in Aristotle’s syllogistic. Studies in Logic and Theory of Knowledge 5, 231–236 (2002)

    Google Scholar 

  7. Łukasiewicz, J., Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Clarendon Press, Oxford, 1952.

  8. McKinsey J.C.C.: The decision problem for some classes of sentences without quantifiers. The Journal of Symbolic Logic 8, 61–76 (1943)

    Article  Google Scholar 

  9. Pietruszczak A.: O logice tradycyjnej i rachunku nazw dopuszczaja̧cym podstawienia nazw pustych. Ruch Filozoficzny 44, 158–166 (1987)

    Google Scholar 

  10. Pietruszczak, A., Bezkwantyfikatorowy rachunek nazw. Systemy i ich metateoria. Wydawnictwo Adam Marszaek, Toruń, 1991.

  11. Pietruszczak A.: Standardowe rachunki nazw z funktorem Leśniewskiego. Acta Universitatis Nicolai Copernici, Logika I, 5–29 (1991)

    Google Scholar 

  12. Pietruszczak A.: Cardinalities of models for pure calculi of names. Reports on Mathematical Logic 28, 87–102 (1994)

    Google Scholar 

  13. Pratt-Hartmann I., Moss L.S.: Logics for the relational syllogistic. The Review of Symbolic Logic 2, 1–37 (2009)

    Article  Google Scholar 

  14. Prior A.N.: Formal Logic. Clarendon Press, Oxford (1962)

    Google Scholar 

  15. Słupecki, J., Z badań nad sylogistyka̧ Arystotelesa. Wroclaw, 1948.

  16. Słupecki J.: S. Leśniewski’s calculus of names. Studia Logica 3, 7–76 (1955)

    Article  Google Scholar 

  17. Słupecki, J., G. Bryll, and U. Wybraniec-Skardowska, Theory of rejected propositions. I. Studia Logica 29(1), 1971.

  18. Urbaniak R.: Some non-standard interpretations of the axiomatic basis of Leśniewski’s ontology. The Australasian Journal of Logic 4, 13–46 (2006)

    Google Scholar 

  19. Urbaniak R.: A note on identity and higher-order quantification. The Australasian Journal of Logic 7, 48–55 (2009)

    Google Scholar 

  20. Waragai T., Oyamada K.: A system of ontology based on identity and partial ordering as an adequate logical apparatus for describing taxonomical structures of concepts. Annals of the Japan Association for Philosophy of Science 15(2), 123–149 (2007)

    Google Scholar 

  21. Wójcicki R.: Dual counterparts of consequence operations. Bulletin of the Section of Logic 2, 54–57 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Kulicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulicki, P. An Axiomatisation of a Pure Calculus of Names. Stud Logica 100, 921–946 (2012). https://doi.org/10.1007/s11225-012-9441-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-012-9441-8

Keywords

Navigation