Abstract
An effect algebra is a partial algebraic structure, originally formulated as an algebraic base for unsharp quantum measurements. In this article we present an approach to the study of lattice effect algebras (LEAs) that emphasizes their structure as algebraic models for the semantics of (possibly) non-standard symbolic logics. This is accomplished by focusing on the interplay among conjunction, implication, and negation connectives on LEAs, where the conjunction and implication connectives are related by a residuation law. Special cases of LEAs are MV-algebras and orthomodular lattices. The main result of the paper is a characterization of LEAs in terms of so-called Sasaki algebras. Also, we compare and contrast LEAs, Hájek’s BL-algebras, and the basic algebras of Chajda, Halaš, and Kühr.
Similar content being viewed by others
References
Avallone A., Vitolo P: Lattice uniformities on effect algebras, Internat. J. Theoret. Phys. 44(7), 793–806 (2005)
Bennett K. M., Foulis J. D.: Phi-symmetric effect algebras, Found. Phys. 25(12), 1699–1722 (1995)
Beran, L., Orthomodular Lattices, An Algebraic Approach, Mathematics and its Applications, Vol. 18, D. Reidel Publishing Company, Dordrecht, 1985.
Birkhoff, G., Lattice Theory, A.M.S. Colloquium Publications 25, Corrected reprint of the 1967 third edition, American Mathematical Society, Providence, R.I., 1979, ISBN: 0-8218-1025-1.
Blyth, T. S., Lattices and ordered algebraic structures, Universitext, Springer-Verlag London, Ltd., London, 2005, ISBN: 1-85233-905-5.
Blyth, T. S. and M. F. Janowitz, Residuation theory, International Series of Monographs in Pure and Applied Mathematics, Vol. 102, Pergamon Press, Oxford-New York-Toronto, 1972.
Chajda I., Halaš R., Kühr J.: Many-valued quantum algebras, Alg. Univer. 60(1), 63–90 (2009)
Chang C.C.: Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88, 467–490 (1957)
Chovanec F., Kôpka F.: Boolean D-posets, Quantum structures (Liptovský Ján 1995), Tatra Mt. Math. Publ. 10, 183–197 (1997)
Dalla Chiara, M. L., and R. Giuntini, Quantum Logics, in D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 6, Kluwer Academic Publishers, Dordrecht, 2002, pp. 129-228. (arXiv:quant-ph/0101028 v. 2, 2001).
Dalla Chiara, M. L., R. Giuntini, and R. J. Greechie, Reasoning in Quantum Theory, Trends in Logic, Vol 22, Kluwer Academic, Dordrecht/Boston/London, 2004 ISBN: 1-4020-1978-5.
Dvurečenskij A.: Every linear pseudo BL-algebra admits a state, Soft Comput.11, 495–501 (2007)
Dvurečenskij, A., and S. Pulmannová, New Trends in Quantum Structures, Kluwer Academic Publications, Dordrecht and Ister Science Bratislava, 2000, ISBN: 0-7923-6471-6; 80-88683-23-8.
Esteva F., Godo L ., Hájek P., F. Montagna: Hoops and fuzzy logic, J. Logic Comput. 13(4), 531–555 (2003)
Esteva F., Godo L., Hájek P, Navara M: Residuated fuzzy logics with an involutive negation, Arch. Math.Logic 39, 103–124 (2009)
Finch P. D.: On the lattice structure of quantum logic, Bull. Austral. Math. Soc. 1, 333–340 (1969)
Foulis D. J.: MV and Heyting effect algebras, Found. Phys. 30(10), 1687–1706 (2000)
Foulis, D. J., The universal group of a Heyting effect algebra, Studia Logica 84:407–424, 2006.
Foulis D. J.: Observables, states, and symmetries in the context of CB-effect algebras, Rep. Math. Phys. 60(2), 329–346 (2007)
Foulis J. D., Bennett K. M.: Effect algebras and unsharp quantum logic, Found. Phys. 24(10), 1331–1352 (1994)
Goldblatt, R. I., Topoi. The categorical analysis of logic. Studies in Logic and the Foundations of Mathematics 98, North-Holland Publishing Co., Amsterdam-New York, 1979.
Greechie, R. J., D. J. Foulis, and S. Pulmannová, The center of an effect algebra, Order 12:91–106, 1995.
Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4, Kluwer, Dordrecht, 1998.
Hájek, P., mathematical fuzzy logic, Fuzzy Sets and Systems 157:597–603, 2006.
Hájek, P., Basic fuzzy logic and BL-algebras, Soft Computing 2:124–128, 1998.
Hájek, A. and N. Hall, The hypothesis of the conditional construal of conditional probability, in E. Ells and B. Skyrms (eds.), Probability and Conditionals, Cambridge Univ. Press, Cambridge 1994, pp. 75–112.
Herman, L., and R. Piziak, Modal propositional logic on an orthomodular basis, Internat. J. Symbolic Logic 39:478–488, 1974.
Herman, L., E. L. Marsden, and R. Piziak, Implication connectives in orthomodular lattices, Notre Dame J. Formal Logic 16:305–328, 1975.
Jenča G.: The block structure of complete lattice ordered effect algebras, J. Aust. Math. Soc. 83(2), 181–216 (2007)
Jenča, G., and Z. Riečanová, On sharp elements in lattice ordered effect algebras, BUSEFAL 80:24–29, 1999.
Jordan, P., Über nichtkommutative Verbände (German) Arch. Math. (Basel) 2:56–59, 1949.
Kalmbach, G., Orthomodular Lattices, Academic Press, London, New York, 1983, ISBN 0-12-394580-1.
Lehmann D.: A presentation of quantum logic based on an and then connective. J. Logic Comput. 18(1), 59–76 (2008)
Mundici D (1986) Interpretation of AF C* -algebras in Łukasiewicz sentential calculus, Journal of Functional Analysis 65:15–63
Mundici D.: MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica 31, 889–894 (1986)
Pulmannová S.: Effect algebras with the Riesz decomposition property and AF C*-algebras, Found. Phys. 29(9), 1389–1401 (1999)
Riečanová, Z., Compatibility and central elements in effect algebras. Fuzzy sets, Part I (Liptovský Ján, 1998), Tatra Mt. Math. Publ. 16:151–158, 1999.
Riečanová, Z., Generalization of blocks for D-lattices and lattice-ordered effect algebras, Internat. J. Theoret. Phys. 39(2):231–237, 2000.
Riečanová, Z., Pseudocomplemented lattice effect algebras and existence of states, Inform. Sci. 179(5):529–534, 2009.
Vetterlein T.: Partial algebras for Łukasiewicz logics and its extensions, Arch. Math. Logic 44, 913–933 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Foulis, D.J., Pulmannová, S. Logical Connectives on Lattice Effect Algebras. Stud Logica 100, 1291–1315 (2012). https://doi.org/10.1007/s11225-012-9454-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-012-9454-3