Skip to main content
Log in

Logical Connectives on Lattice Effect Algebras

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

An effect algebra is a partial algebraic structure, originally formulated as an algebraic base for unsharp quantum measurements. In this article we present an approach to the study of lattice effect algebras (LEAs) that emphasizes their structure as algebraic models for the semantics of (possibly) non-standard symbolic logics. This is accomplished by focusing on the interplay among conjunction, implication, and negation connectives on LEAs, where the conjunction and implication connectives are related by a residuation law. Special cases of LEAs are MV-algebras and orthomodular lattices. The main result of the paper is a characterization of LEAs in terms of so-called Sasaki algebras. Also, we compare and contrast LEAs, Hájek’s BL-algebras, and the basic algebras of Chajda, Halaš, and Kühr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avallone A., Vitolo P: Lattice uniformities on effect algebras, Internat. J. Theoret. Phys. 44(7), 793–806 (2005)

    Article  Google Scholar 

  2. Bennett K. M., Foulis J. D.: Phi-symmetric effect algebras, Found. Phys. 25(12), 1699–1722 (1995)

    Google Scholar 

  3. Beran, L., Orthomodular Lattices, An Algebraic Approach, Mathematics and its Applications, Vol. 18, D. Reidel Publishing Company, Dordrecht, 1985.

  4. Birkhoff, G., Lattice Theory, A.M.S. Colloquium Publications 25, Corrected reprint of the 1967 third edition, American Mathematical Society, Providence, R.I., 1979, ISBN: 0-8218-1025-1.

  5. Blyth, T. S., Lattices and ordered algebraic structures, Universitext, Springer-Verlag London, Ltd., London, 2005, ISBN: 1-85233-905-5.

  6. Blyth, T. S. and M. F. Janowitz, Residuation theory, International Series of Monographs in Pure and Applied Mathematics, Vol. 102, Pergamon Press, Oxford-New York-Toronto, 1972.

  7. Chajda I., Halaš R., Kühr J.: Many-valued quantum algebras, Alg. Univer. 60(1), 63–90 (2009)

    Article  Google Scholar 

  8. Chang C.C.: Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88, 467–490 (1957)

    Article  Google Scholar 

  9. Chovanec F., Kôpka F.: Boolean D-posets, Quantum structures (Liptovský Ján 1995), Tatra Mt. Math. Publ. 10, 183–197 (1997)

    Google Scholar 

  10. Dalla Chiara, M. L., and R. Giuntini, Quantum Logics, in D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 6, Kluwer Academic Publishers, Dordrecht, 2002, pp. 129-228. (arXiv:quant-ph/0101028 v. 2, 2001).

  11. Dalla Chiara, M. L., R. Giuntini, and R. J. Greechie, Reasoning in Quantum Theory, Trends in Logic, Vol 22, Kluwer Academic, Dordrecht/Boston/London, 2004 ISBN: 1-4020-1978-5.

  12. Dvurečenskij A.: Every linear pseudo BL-algebra admits a state, Soft Comput.11, 495–501 (2007)

    Article  Google Scholar 

  13. Dvurečenskij, A., and S. Pulmannová, New Trends in Quantum Structures, Kluwer Academic Publications, Dordrecht and Ister Science Bratislava, 2000, ISBN: 0-7923-6471-6; 80-88683-23-8.

  14. Esteva F., Godo L ., Hájek P., F. Montagna: Hoops and fuzzy logic, J. Logic Comput. 13(4), 531–555 (2003)

    Google Scholar 

  15. Esteva F., Godo L., Hájek P, Navara M: Residuated fuzzy logics with an involutive negation, Arch. Math.Logic 39, 103–124 (2009)

    Article  Google Scholar 

  16. Finch P. D.: On the lattice structure of quantum logic, Bull. Austral. Math. Soc. 1, 333–340 (1969)

    Article  Google Scholar 

  17. Foulis D. J.: MV and Heyting effect algebras, Found. Phys. 30(10), 1687–1706 (2000)

    Google Scholar 

  18. Foulis, D. J., The universal group of a Heyting effect algebra, Studia Logica 84:407–424, 2006.

    Google Scholar 

  19. Foulis D. J.: Observables, states, and symmetries in the context of CB-effect algebras, Rep. Math. Phys. 60(2), 329–346 (2007)

    Google Scholar 

  20. Foulis J. D., Bennett K. M.: Effect algebras and unsharp quantum logic, Found. Phys. 24(10), 1331–1352 (1994)

    Google Scholar 

  21. Goldblatt, R. I., Topoi. The categorical analysis of logic. Studies in Logic and the Foundations of Mathematics 98, North-Holland Publishing Co., Amsterdam-New York, 1979.

  22. Greechie, R. J., D. J. Foulis, and S. Pulmannová, The center of an effect algebra, Order 12:91–106, 1995.

    Google Scholar 

  23. Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4, Kluwer, Dordrecht, 1998.

  24. Hájek, P., mathematical fuzzy logic, Fuzzy Sets and Systems 157:597–603, 2006.

    Google Scholar 

  25. Hájek, P., Basic fuzzy logic and BL-algebras, Soft Computing 2:124–128, 1998.

    Google Scholar 

  26. Hájek, A. and N. Hall, The hypothesis of the conditional construal of conditional probability, in E. Ells and B. Skyrms (eds.), Probability and Conditionals, Cambridge Univ. Press, Cambridge 1994, pp. 75–112.

  27. Herman, L., and R. Piziak, Modal propositional logic on an orthomodular basis, Internat. J. Symbolic Logic 39:478–488, 1974.

    Google Scholar 

  28. Herman, L., E. L. Marsden, and R. Piziak, Implication connectives in orthomodular lattices, Notre Dame J. Formal Logic 16:305–328, 1975.

    Google Scholar 

  29. Jenča G.: The block structure of complete lattice ordered effect algebras, J. Aust. Math. Soc. 83(2), 181–216 (2007)

    Article  Google Scholar 

  30. Jenča, G., and Z. Riečanová, On sharp elements in lattice ordered effect algebras, BUSEFAL 80:24–29, 1999.

    Google Scholar 

  31. Jordan, P., Über nichtkommutative Verbände (German) Arch. Math. (Basel) 2:56–59, 1949.

    Google Scholar 

  32. Kalmbach, G., Orthomodular Lattices, Academic Press, London, New York, 1983, ISBN 0-12-394580-1.

  33. Lehmann D.: A presentation of quantum logic based on an and then connective. J. Logic Comput. 18(1), 59–76 (2008)

    Article  Google Scholar 

  34. Mundici D (1986) Interpretation of AF C* -algebras in Łukasiewicz sentential calculus, Journal of Functional Analysis 65:15–63

    Google Scholar 

  35. Mundici D.: MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica 31, 889–894 (1986)

    Google Scholar 

  36. Pulmannová S.: Effect algebras with the Riesz decomposition property and AF C*-algebras, Found. Phys. 29(9), 1389–1401 (1999)

    Google Scholar 

  37. Riečanová, Z., Compatibility and central elements in effect algebras. Fuzzy sets, Part I (Liptovský Ján, 1998), Tatra Mt. Math. Publ. 16:151–158, 1999.

  38. Riečanová, Z., Generalization of blocks for D-lattices and lattice-ordered effect algebras, Internat. J. Theoret. Phys. 39(2):231–237, 2000.

    Google Scholar 

  39. Riečanová, Z., Pseudocomplemented lattice effect algebras and existence of states, Inform. Sci. 179(5):529–534, 2009.

    Google Scholar 

  40. Vetterlein T.: Partial algebras for Łukasiewicz logics and its extensions, Arch. Math. Logic 44, 913–933 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pulmannová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foulis, D.J., Pulmannová, S. Logical Connectives on Lattice Effect Algebras. Stud Logica 100, 1291–1315 (2012). https://doi.org/10.1007/s11225-012-9454-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-012-9454-3

Keywords

Navigation