Skip to main content
Log in

Metacompleteness of Substructural Logics

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Metacompleteness is used to prove properties such as the disjunction property and the existence property in the area of relevant logics. On the other hand, the disjunction property of several basic propositional substructural logics over FL has been proved using the cut elimination theorem of sequent calculi and algebraic characterization. The present paper shows that Meyer’s metavaluational technique and Slaney’s metavaluational technique can be applied to basic predicate intuitionistic substructural logics and basic predicate involutive substructural logics, respectively. As a corollary of metacompleteness, the disjunction property, the existence property, and the admissibility of certain rules in such logics can be proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brady, R.T. (ed.), Relevant Logics and Their Rivals, Volume II, Ashgate Publishing Limited, Aldershot, 2003.

  2. Ciabattoni, A., N. Galatos, and K. Terui, From axioms to analytic rules in nonclassical logics, Proceedings of the 2008 23rd Annual IEEE Symposium on Logic in Computer Science (LICS’08), 2008, pp. 229–240.

  3. Dunn, J. M., and G. Restall, Relevance logic, in D. Gabbay and F. Guenthner, (eds.), Handbook of Philosophical Logic, 2nd edition, Vol. 6, Kluwer, Dordrecht, 2002, pp.1–128.

  4. Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, 2007.

  5. Harrop R: Concerning formulas of the types \({A \rightarrow B \vee C.\,A \rightarrow \exists xB(x)}\) in intuitionistic systems of logic, Journal of Symbolic Logic 25, 27–32 (1960)

    Article  Google Scholar 

  6. Kleene S. C.: Disjunction and existence under implication in elementary intuitionistic formalisms. Journal of Symbolic Logic 27, 11–18 (1962)

    Article  Google Scholar 

  7. Kreisel G., Putnum H: Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkül. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 3, 74–78 (1957)

    Article  Google Scholar 

  8. Meyer R. K.: Metacompleteness. Notre Dame Journal of Formal Logic 17, 501–516 (1976)

    Article  Google Scholar 

  9. Restall, G., An Introduction to Substructural Logics, Routledge, 2000.

  10. Schoroeder-Heister, P., and K. Došsen, (eds.), Substructural Logics, Oxford University Press, 1993.

  11. Slaney J. K: A Metacompleteness theorem for contraction-free relevant logics. Studia Logica 43, 159–168 (1984)

    Article  Google Scholar 

  12. Slaney J. K.: Reduced models for relevant logics without WI. Notre Dame Journal of Formal Logic 28, 395–407 (1987)

    Article  Google Scholar 

  13. Souma D: An algebraic approach to the disjunction property of substructural logics. Notre Dame Journal of Formal Logic 48, 489–495 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Seki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, T. Metacompleteness of Substructural Logics. Stud Logica 100, 1175–1199 (2012). https://doi.org/10.1007/s11225-012-9458-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-012-9458-z

Keywords

Navigation