Skip to main content
Log in

An Algebraic Proof of the Admissibility of γ in Relevant Modal Logics

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The admissibility of Ackermann’s rule γ is one of the most important problems in relevant logics. The admissibility of γ was first proved by an algebraic method. However, the development of Routley-Meyer semantics and metavaluational techniques makes it possible to prove the admissibility of γ using the method of normal models or the method using metavaluations, and the use of such methods is preferred. This paper discusses an algebraic proof of the admissibility of γ in relevant modal logics based on modern algebraic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brady, R.T. (ed.), Relevant Logics and Their Rivals, Volume II, Ashgate Publishing Limited, Aldershot, 2003.

  2. Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, 2001.

  3. Dunn, J. M., and G. Restall, Relevance logic, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd edition, Vol. 6, Kluwer, Dordrecht, 2002, pp. 1–128.

  4. Galatos, N., P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, 2007.

  5. Mares E. D.: Classically complete modal relevant logics. Mathematical Logic Quarterly 39, 165–177 (1993)

    Article  Google Scholar 

  6. Mares E. D., Meyer R. K.: The admissibility of γ in R4. Notre Dame Journal of Formal Logic 33, 197–206 (1992)

    Article  Google Scholar 

  7. Meyer R.K.: Metacompleteness. Notre Dame Journal of Formal Logic 17, 501–516 (1976)

    Article  Google Scholar 

  8. Meyer R. K., Dunn J. M.: E, R and γ. Journal of Symbolic Logic 34, 460–474 (1969)

    Article  Google Scholar 

  9. Olson, J. S., J. G. Raftery and C. J. van Alten, Structural completeness in substructural logics, Logic Journal of the IGPL 16:453–495, 2008.

    Google Scholar 

  10. Routley R., Meyer R.K.: The semantics of entailment II. Journal of Philosophical Logic 1, 192–208 (1972)

    Article  Google Scholar 

  11. Routley, R., and R. K. Meyer, The semantics of entailment I, in H. Leblanc (ed.), Truth, Syntax and Semantics, North-Holland, Amsterdam, 1973, pp. 194–243.

  12. Routley, R., V. Plumwood, R.K. Meyer and R. T. Brady, Relevant Logics and Their Rivals I, Ridgeview Publishing Company, Atascadero, 1982.

  13. Seki T.: A Sahlqvist theorem for relevant modal logics. Studia Logica 73, 383–411 (2003)

    Article  Google Scholar 

  14. Seki T.: The γ-admissibility of relevant modal logics I - the method of normal models. Studia Logica 97, 199–231 (2011)

    Article  Google Scholar 

  15. Seki T.: The γ-admissibility of relevant modal logics II - the method using metavaluations. Studia Logica 97, 375–407 (2011)

    Google Scholar 

  16. Seki, T., Some metacomplete relevant modal logics, Studia Logica, to appear.

  17. Slaney J. K.: A Metacompleteness theorem for contraction-free relevant logics. Studia Logica 43, 159–168 (1984)

    Article  Google Scholar 

  18. Slaney J.K.: Reduced models for relevant logics without WI. Notre Dame Journal of Formal Logic 28, 395–407 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Seki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, T. An Algebraic Proof of the Admissibility of γ in Relevant Modal Logics. Stud Logica 100, 1149–1174 (2012). https://doi.org/10.1007/s11225-012-9459-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-012-9459-y

Keywords

Navigation