Skip to main content
Log in

Duality for the Logic of Quantum Actions

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In this paper we show a duality between two approaches to represent quantum structures abstractly and to model the logic and dynamics therein. One approach puts forward a “quantum dynamic frame” (Baltag et al. in Int J Theor Phys, 44(12):2267–2282, 2005), a labelled transition system whose transition relations are intended to represent projections and unitaries on a (generalized) Hilbert space. The other approach considers a “Piron lattice” (Piron in Foundations of Quantum Physics, 1976), which characterizes the algebra of closed linear subspaces of a (generalized) Hilbert space. We define categories of these two sorts of structures and show a duality between them. This result establishes, on one direction of the duality, that quantum dynamic frames represent quantum structures correctly; on the other direction, it gives rise to a representation of dynamics on a Piron lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aerts, D., Quantum axiomatics, in K. Engesser, D. M. Gabbay, and D. Lehmann, (eds.), Handbook of Quantum Logic and Quantum Structures, 1st edn., Elsevier Science B.V., Amsterdam, 2009, pp. 79–126.

  2. Awodey S.: Category Theory. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  3. Baltag A., Smets S.: Complete axiomatizations for quantum actions. International Journal of Theoretical Physics 44(12), 2267–2282 (2005)

    Article  Google Scholar 

  4. Baltag A., Smets S.: LQP: the dynamic logic of quantum information. Mathematical Structures in Computer Science 16(3), 491–525 (2006)

    Article  Google Scholar 

  5. Beltrametti, E., and G. Cassinelli, The Logic of Quantum Mechanics, Encyclopedia of Mathematics and Its Applications, Addison-Wesley Publishing Company, Boston, 1981.

  6. Birkhoff G.: Lattice Theory. American Mathematical Society, New York (1967)

    Google Scholar 

  7. Blackburn P., de Rijke M., Venema Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  8. Coecke B., Smets S.: The Sasaki hook is not a [static] implicative connective but induces a backward [in time] dynamic one that assigns causes. International Journal of Theoretical Physics 43, 1705–1736 (2004)

    Article  Google Scholar 

  9. Faure C.-A.: An elementary proof of the fundamental theorem of projective geometry (dedicated to Alfred Frölicher). Geometriae Dedicata 90(1), 145–151 (2002)

    Article  Google Scholar 

  10. Goldblatt R.: Semantic analysis of orthologic. Journal of Philosophical Logic 3, 19–35 (1974)

    Article  Google Scholar 

  11. Harel D., Tiuryn J., Kozen D.: Dynamic Logic. MIT Press, Cambridge, MA (2000)

    Google Scholar 

  12. Johnstone P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  13. Kalmbach G.: Orthomodular Lattices. Academic Press, London (1983)

    Google Scholar 

  14. Kozen, D., K. G. Larsen, R. Mardare, and P. Panangaden, Stone duality for Markov processes, in Proceedings of the 28th Annual IEEE Symposium on Logic in Computer Science: LICS.

  15. Mayet R.: Some characterizations of the underlying division ring of a Hilbert lattice by automorphisms. International Journal of Theoretical Physics 37, 109–114 (1998)

    Article  Google Scholar 

  16. Moore D.J.: Categories of representations of physical systems. Helvetica Physica Acta 68, 658–678 (1995)

    Google Scholar 

  17. : On state spaces and property lattices. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 30(1), 61–83 (1999)

    Article  Google Scholar 

  18. Piron C.: Foundations of Quantum Physics. W.A. Benjamin Inc., San Francisco (1976)

    Book  Google Scholar 

  19. Stone M.H.: The theory of representations for Boolean algebras. Transactions of the American Mathematical Society 40, 37–111 (1936)

    Google Scholar 

  20. Stubbe, I., and B. van Steirteghem, Propositional systems, Hilbert lattices and generalized Hilbert spaces, in K. Engesser, D. M. Gabbay, and D. Lehmann, (eds.), Handbook of Quantum Logic and Quantum Structures, Elsevier Science B.V., Amsterdam, 2007, pp. 477–523.

  21. Venema, Y., Algebras and coalgebras, in P. Blackburn, J. van Benthem, and F. Wolter, (eds.), Handbook of Modal Logic, vol. 3 of Studies in Logic and Practical Reasoning, Elsevier, New York, 2007, pp. 331–426.

  22. Wilce, A., Quantum logic and probability theory, in E. N. Zalta, (ed.), The Stanford Encyclopedia of Philosophy, fall 2012 edn., 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyang Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergfeld, J.M., Kishida, K., Sack, J. et al. Duality for the Logic of Quantum Actions. Stud Logica 103, 781–805 (2015). https://doi.org/10.1007/s11225-014-9592-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-014-9592-x

Keywords

Navigation