Skip to main content
Log in

On Categorical Equivalence of Weak Monadic Residuated Distributive Lattices and Weak Monadic c-Differential Residuated Distributive Lattices

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The category \(\mathbb {DRDL}{'}\), whose objects are c-differential residuated distributive lattices satisfying the condition \(\textbf{CK}\), is the image of the category \(\mathbb {RDL}\), whose objects are residuated distributive lattices, under the categorical equivalence \(\textbf{K}\) that is constructed in Castiglioni et al. (Stud Log 90:93–124, 2008). In this paper, we introduce weak monadic residuated lattices and study some of their subvarieties. In particular, we use the functor \(\textbf{K}\) to relate the category \(\mathbb {WMRDL}\), whose objects are weak monadic residuated distributive lattices, and the category \(\mathbb {WMDRDL}{'}\), whose objects are pairs formed by an object of \(\mathbb {DRDL}{'}\) and a center weak universal quantifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahls, P., J. Cole, N. Galatos, P. Jipsen, and C. Tsinakis, Cancellative residuated lattices, Algebra Universalis 50:83–106, 2003.

    Article  Google Scholar 

  2. Belluce, L. P., R. Grigolia, and A. Lettieri, Representations of monadic MV-algebras, Studia Logica 81:123–144, 2005.

    Article  Google Scholar 

  3. Bezhanishvili, G., Varieties of monadic Heyting algebras. Part I, Studia Logica 61:367–402, 1998.

    Article  Google Scholar 

  4. Bezhanishvili, G., Varieties of monadic Heyting algebras. Part II: Duality theory, Studia Logica 62:21–48, 1999.

    Google Scholar 

  5. Bezhanishvili, G., Varieties of monadic Heyting algebras. Part III, Studia Logica 64:215–256, 2000.

    Article  Google Scholar 

  6. Blok, W. J., and C. J. van Alten, The finite embeddability property for residuated lattices, pocrims and BCK-algebras, Algebra Universalis 48:253–271, 2002.

    Article  Google Scholar 

  7. Blount, K., and C. Tsinakis, The structure of residuated lattices, International Journal of Algebra and Computation 13:437–461, 2003.

    Article  Google Scholar 

  8. Brignole, D., and A. Monteiro, Caracterisation des algèbres de Nelson par des egalites I, Proceedings of Japan Academy 43:279–283, 1967.

    Google Scholar 

  9. Brignole, D., and A. Monteiro, Caracterisation des algèbres de Nelson par des egalites II, Proceedings of Japan Academy 43:284–285, 1967.

    Google Scholar 

  10. Castaño, D., C. Cimadamore, J. P. Diaz Varela, and L. Rueda, Monadic BL-algebras: the equivalent algebraic semantics of Hajek’s fuzzy logic, Fuzzy Sets and Systems 320:40–59, 2017.

  11. Castiglioni, J. L., and H. J. San Martín, Compatible operations on residuated lattices, Studia Logica 98:203–222, 2011.

  12. Castiglioni, J. L., M. Menni, and M. Sagastume, On some categories of involutive centered residuated lattices, Studia Logica 90:93–124, 2008.

    Article  Google Scholar 

  13. Castiglioni, J. L., R. Lewin, and M. Sagastume, On a definition of a variety of monadic \(\ell \)-groups, Studia Logica 102:67–92, 2014.

    Article  Google Scholar 

  14. Chajda, I., and H. Länger, Quantifiers on lattices with an antitone involution, Demonstratio Mathematica 42:241–246, 2009.

    Article  Google Scholar 

  15. Cignoli, R., The class of Kleene algebras satisfying an interpolation property and Nelson algebras, Algebra Universalis 23:262–292, 1986.

    Article  Google Scholar 

  16. Cimadamore, C., and J. P. Diaz Varela, Monadic MV-algebras are equivalent to monadic \(\ell \)-groups with strong unit, Studia Logica 98:175–201, 2011.

  17. Dilworth, R. P., Non-commutative residuated lattices, Transactions of the American Mathematical Society 46:426–444, 1939.

    Article  Google Scholar 

  18. Drǎgulici, D. D., Quantifiers on BL-algebras, Analele Universitatill Bucuret Mathematica Informatica, 50:29–42, 2001.

    Google Scholar 

  19. Di Nola, A., and R. Grigolia, On monadic MV-algebras, Annals of Pure and Applied Logic 128:125–139, 2004.

    Article  Google Scholar 

  20. Galatos, N., and C. Tsinakis, Generalized MV-algebras, Journal of Algebra 283:254–291, 2005.

    Article  Google Scholar 

  21. Galatos, N., and J. G. Raftery, Adding involution to residuated lattices, Studia Logica 77:181–207, 2004.

    Article  Google Scholar 

  22. Georgescu, G., and A. Iorgulescu, Pseudo MV-algebras, Journal of Multiple-Valued Logic and Soft Computing 6:95–135, 2001.

    Google Scholar 

  23. Grigolia, R., Monadic BL-algebras, Georgian Mathematical Journal 13:267–276, 2006.

    Article  Google Scholar 

  24. Halmos, R. P., Algebraic logic. I: Monadic boolean algebras, Composition Mathematica 12:217–249, 1955.

  25. Hájek, P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.

    Book  Google Scholar 

  26. He, P. F., J. T. Wang, and J. Yang, The existence of states based on Glivenko semihoops, Archive for Mathemtical Logic 61:1145–1170, 2022.

    Article  Google Scholar 

  27. Jipsen, P., and C. Tsinakis, in J. Martinez, (ed.), A Survey of Residuated Lattices, Ordered Algebraic Structures, Kluwer Academic Publishers, Dordrecht, 2002, pp. 15–96.

  28. Lattanzi, M., Wajsberg algebras with a U-operator, Journal of Multiple-Valued Logic and Soft Computing 10:315–338, 2004.

    Google Scholar 

  29. Lattanzi, M., and A. Petrovich, A duality for monadic (n+1)-valued MV-algebras, in Proceeding of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish), 2008, pp. 107–117.

  30. Rachu̇nek, J., A non-commutative generalization of MV-algebras, Czechoslovak Mathematical Journal 52:255–273, 2002.

  31. Rachu̇nek, J., and D. Šalounová, Monadic GMV-algebras, Archive for Mathematical Logic 47:277–297, 2008.

  32. Rachu̇nek, J., and D. Šalounová, Monadic bounded residuated lattices, Order 30:195–210, 2013.

  33. Rasiowa, H., \(\cal{N}\)-lattices and constructive logic with strong negation, Fundamenta Mathematicae 46:61–80, 1958.

  34. Rutledge, J. D., A Preliminary Investigation of the Infinitely Many-Valued Predicate Calculus, Ph.D. thesis, Cornell University, 1959.

    Google Scholar 

  35. Tsinakis, C., and A. M. Wille, Minimal varieties of Involutive residuated lattices, Studia Logica 83:407–423, 2006.

    Article  Google Scholar 

  36. Vakarelov, D., Notes on \(\cal{N}\)-lattices and constructive logic with strong negation, Studia Logica 36:109–125, 1977.

  37. van Alten, C. J., and J. G. Raftery, The finite model property for the implicational fragments of IPC without exchange and contraction, Studia Logica 63:213–222, 1999.

    Article  Google Scholar 

  38. Wang, J. T., P. F. He, and Y. H. She, Monadic NM-algebras, Logic Journal of the IGPL 27:812–835, 2019.

    Article  Google Scholar 

  39. Wang, J. T., X. L. Xin, and P. F. He, Monadic bounded hoops, Soft Computing 22:1749–1762, 2018.

    Article  Google Scholar 

  40. Wang, J. T., P. F. He, J. Yang, M. Wang, and X. L. He, Monadic NM-algebras: an algebraic approach to monadic predicate nilpotent minimum logic, Journal of Logic and Computation 32:741–766, 2022.

    Article  Google Scholar 

  41. Wang, J. T., and X. L. Xin, Monadic algebras of an involutive monoidal t-norm based logic, Iranian Journal of Fuzzy Systems 19:187–202, 2022.

    Google Scholar 

  42. Xin, X. L., Y. L. Fu, Y. Y. Lai, and J. T. Wang, Monadic pseudo BCI-algebras and corresponding logics, Soft Computing 23:1499–1510, 2019.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the editor and the referee for their valuable comments and helpful suggestions which help to improve the presentation of this paper. This work is supported by the National Natural Science Foundation of China (12001423, 61976244,12171294, 12001413,11871320), Major Program of the National Social Science Foundation of China (20 &ZD047), Natural Science Foundation of Shaanxi Province (2020JQ-762, 2021JQ-580, 2021JQ-579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Daniele Mundici

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.T., She, Y.H., He, P.F. et al. On Categorical Equivalence of Weak Monadic Residuated Distributive Lattices and Weak Monadic c-Differential Residuated Distributive Lattices. Stud Logica 111, 361–390 (2023). https://doi.org/10.1007/s11225-022-10026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-022-10026-1

Keywords

Mathematics Subject Classification

Navigation