Skip to main content
Log in

Parallel Split-Step Fourier Methods for the Coupled Nonlinear Schrödinger Type Equations

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The nonlinear Schrödinger type equations are of tremendous interest in both theory and applications. Various regimes of pulse propagation in optical fibers are modeled by some form of the nonlinear Schrödinger equation.

In this paper we introduce parallel split-step Fourier methods for the numerical simulations of the coupled nonlinear Schrödinger equation that describes the propagation of two orthogonally polarized pulses in a monomode birefringent fibers. These methods are implemented on the Origin 2000 multiprocessor computer. Our numerical experiments have shown that these methods give accurate results and considerable speedup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Cheney and D. Kincaid, Numerical Mathematics and Computing. Brooks/Cole-Thomson, Belmont, CA, USA, 2004.

    Google Scholar 

  2. J. W. Cooley and J. W. Tukey, An algorithm for the machine computation of complex Fourier series. Mathematics of Computation, 19:297–301, 1965.

    Google Scholar 

  3. M. Frigo and S. G. Johnson, The Fastest Fourier Transform in the West. Technical report, MIT-LCS-TR-728, MIT Laboratory for Computer Science, 1997.

  4. M. Frigo, A fast Fourier transform compiler, preprint, 1999.

  5. R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM Review Chronicle, 15:423, 1973.

    Google Scholar 

  6. M. S. Ismail and T. R. Taha, Numerical simulation of coupled nonlinear Schrödinger equation. Special Issue of the Journal Mathematics and Computers in Simulation on “Optical Solitons”, 56(6):547–562,2001

    Google Scholar 

  7. C. R. Menyuk, Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes, Journal of the Optical Society of America, B, 5(2):392–402, 1988.

    Google Scholar 

  8. Q. Park and H. J. Shin, Painlevć analysis of the coupled nonlinear Schrödinger equation for polarized optical waves in an isotropic medium, Physical Review E, 59(2):2373–2379, 1999.

    Google Scholar 

  9. J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems. Chapman & Hall, London, 1994.

    Google Scholar 

  10. L. Sirovich, Introduction to Applied Mathematics. Springer Verlag, New York, 1988.

    Google Scholar 

  11. M. Snir, S. Otto, S. H. Lederman, D. Walker, and J. Dongarra. MPI: The Complete Reference. MIT Press, London, 1996.

    Google Scholar 

  12. T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical nonlinear Schrödinger equation, Journal of Computational Physics, 55(2):203–230, 1984.

    Google Scholar 

  13. M. Wadati, T. Izuka, and M. Hisakado, A coupled nonlinear Schrödinger equation, Journal of the Physical Society of Japan, 61(7):2241–2245, 1992.

    Google Scholar 

  14. M. Wald, I. M. Uzunov, F. Lederer, and S. Wabnitz, Optimization of soliton transmissions in dispersion-managed fiber links, Optics Communications, 145:48–52, 1998.

    Google Scholar 

  15. J. A. C. Weideman and B. M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM Journal on Numerical Analysis, 23(3):485–507, 1986.

    Google Scholar 

  16. S. Zoldi, V. Ruban, A. Zenchuk, and S. Burtsev, Parallel implementation of the split-step Fourier method for solving nonlinear Schrödinger systems. SIAM News, 32(1):8–9, 1999.

    Google Scholar 

  17. G. M. Muslu and H. A. Erbay, A split-step Fourier method for the complexmodified Korteweg-de Vries equation. Computers & Mathematics with Applications, 45:503–514, 2003.

    Google Scholar 

  18. R. McLachlan, Symplectic integration of Hamiltonian wave equations. Numerical Mathematics, 66:465–492, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiab R. Taha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taha, T.R., Xu, X. Parallel Split-Step Fourier Methods for the Coupled Nonlinear Schrödinger Type Equations. J Supercomput 32, 5–23 (2005). https://doi.org/10.1007/s11227-005-0183-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-005-0183-5