Skip to main content
Log in

Optimal hypercube simulation on the partitioned optical passive stars network

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Partitioned Optimal Passive Stars network, POPS(d,g), is an optical interconnection network of N processors (N=dg) with g 2 optical passive star couplers. In this network, there are g groups of d processors each and the g 2 couplers are used for connecting each group with each of the groups, including itself. In this paper, we present a technique for optimally simulating a frequently arising hypercube communication pattern on this network for all combinations of values of d and g. Specifically, we show that one-hop movements on the hypercube along the same dimension can be simulated on the POPS(d,g) network in \(\lceil \frac{d}{g}\rceil\) slots for dg and in 2 slots for d=g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li K, Pan Y, Zheng SQ (1998) Parallel computing using optical interconnections. Kluwer, Boston

    MATH  Google Scholar 

  2. Gravenstreter G, Melhem RG, Chiarulli D, Levitan S, Teza J (1995) The partitioned optical passive stars (POPS) topology. In: Proceedings of the ninth international parallel processing symposium, pp 4–10

  3. Gravenstreter G, Melhem RG (1998) Realizing common communication patterns in partitioned optical passive stars (POPS) networks. IEEE Trans Comput 47(9):998–1013

    Article  Google Scholar 

  4. Melhem RG, Gravenstreter G, Chiarulli D, Levitan S (1998). The communication capabilities of partitioned optical passive star networks. In: Li K, Pan Y, Zheng S (eds) Parallel computing using optical interconnections. Kluwer, Boston, pp 77–98

    Chapter  Google Scholar 

  5. Sahni S (2000) The partitioned optical passive stars network: simulations and fundamental operations. IEEE Trans Parallel Distributed Syst 11(7):739–748

    Article  Google Scholar 

  6. Sahni S (2000) Matrix multiplication and data routing using a partitioned optical passive stars network. IEEE Trans Parallel Distributed Syst 11(7):720–728

    Article  Google Scholar 

  7. Datta A, Soundaralakshmi S (2003) Summation and routing on a partitioned optical passive stars network with large group size. IEEE Trans Parallel Distributed Syst 14(12):1275–1285

    Article  Google Scholar 

  8. Mei A, Rizzi R (2002) Routing permutations in partitioned optical passive stars networks. In: Proceedings of the IEEE international parallel and distributed processing symposium (IPDPS 2002)

  9. Berthome P, Ferreira A (1996) Improved embeddings in POPS networks through stack-graph models. In: Proceedings of the third international workshop on massively parallel processing using optical interconnections, pp 130–136

  10. Mei A, Rizzi R (2003) Mapping hypercube computations onto partitioned optical passive star networks. In: Proceedings of the high performance computing conference (HiPC 2003), pp 95–104

  11. Mei A, Rizzi R (2003) Routing permutations in partitioned optical passive stars networks. J Parallel Distributed Comput 63(9):847–852

    Article  MATH  Google Scholar 

  12. Mei A, Rizzi R (2006) Hypercube computations on partitioned optical passive stars networks. IEEE Trans Parallel Distributed Syst 17(6):497–507

    Article  Google Scholar 

  13. Mei A, Rizzi R (2006) Online permutation routing in partitioned optical passive star networks. IEEE Trans Comput 55(12):1557–1571

    Article  Google Scholar 

  14. Datta A, Soundaralakshmi S (2003). Fast merging and sorting on a partitioned optical passive stars network. In: Klein R, Six H, Wegner L (eds) Computer science in perspective. Springer, New York, pp 115–127

    Chapter  Google Scholar 

  15. Rajasekaran S, Davila J (2005) Packet routing and selection on the POPS network. J Parallel Distributed Comput 65(8):927–933

    Article  MATH  Google Scholar 

  16. Auriol BJ, Molakaseema R (2005) A parameterized linear array with reconfigurable pipelined bus system: LARPBS(p). Comput J 48(1):115–125

    Article  Google Scholar 

  17. Gourlay I, Dew PM, Djemame K, Snowdon JF, Russell G (2004) Supporting bulk synchronous parallelism with a high-bandwidth optical interconnect. Concurr Comput Pract Experience 16(13):1247–1270

    Article  Google Scholar 

  18. Chen Y, Shen H, Liu F (2006) Wavelength assignment for realizing parallel FFT on regular optical networks. J Supercomput 36(1):3–16

    Article  Google Scholar 

  19. Al-Ayyoub A, Awwad A, Day K, Ould-Khaoua M (2006) Generalized methods for algorithm development on optical systems. J Supercomput 38(2):111–125

    Article  Google Scholar 

  20. Jana P (2006) Polynomial interpolation and polynomial root finding on OTIS-mesh. Parallel Comput 32(4):301–312

    Article  Google Scholar 

  21. Leighton FT (1992) Introduction to parallel algorithms and architectures: arrays-trees-hypercubes. Morgan Kauffman, San Mateo

    MATH  Google Scholar 

  22. Jaja J (1992) An introduction to parallel algorithms. Addison-Wesley, Reading

    MATH  Google Scholar 

  23. Kaklamanis C, Konstantopoulos C (2005). Optimal embedding of the hypercube on partitioned optical passive stars networks. In: Proceedings of the Euro-Par 2005—parallel processing conference, LNCS, vol 3648, Springer, Berlin/Heidelberg, pp 952–961

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Konstantopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantopoulos, C., Kaklamanis, C. Optimal hypercube simulation on the partitioned optical passive stars network. J Supercomput 42, 165–180 (2007). https://doi.org/10.1007/s11227-007-0130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-007-0130-8

Keywords

Navigation