Skip to main content

Advertisement

Log in

Distributed identification of the lineality space of a cone

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A distributed approach is described for solving lineality (or linearity) space (LS) problems with large cardinalities and a large number of dimensions. The LS solution has applications in engineering, science, and business, and includes a subset of solutions of the more general extended linear complementarity problem (ELCP). A parallel MATLAB framework is employed and results are computed on an 8-node Rocks based cluster computer using Remote Procedure Calls (RPCs) and the MPICH2 Message Passing Interface (MPI). Results show that both approaches perform comparably when solving distributed LS problems. This indicates that when deciding which parallel approach to use, the implementation details particular to the method are the decisive factors, which in this investigation give MPICH2 MPI the advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anitescu M, Potra FA (1996) Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems, Reports on Computational Mathematics, No 93, pp 1-7, October 1996

  2. Balsa F, Catthoor F, De Man HJ (1997) Practical solution for counting scalars and dependencies in ATOMIUM-A memory management system for multidimensional signal processing. IEEE Trans Comput Aided Des Integrated Circ Syst 16(2)

  3. Batlle C, Fossas E, Miralles A, Olivar G (2003) The buck converter as a complementarity problem, preliminary report for the fifth framework research project IST-2002-422, Simulation and control of nonsmooth systems, pp 1–4, Technical University of Catalonia, Spain, June 17 2003.

  4. Caire M (2003) Distributed identification of the lineality space of a cone using a heterogeneous network. Master’s Thesis, The University of Texas at El Paso, El Paso, Texas

  5. Choy LY (2002) MATLAB*P 2.0: Interactive supercomputing made practical. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, September

  6. Cottle RW, Pang JS, Stone RE (1992) The Linear Complementarity Problem. Academic Press, San Diego

    MATH  Google Scholar 

  7. Davis C (1954) Theory of positive linear independence. Am J Math 76:733–746. doi:10.2307/2372648

    Article  MATH  Google Scholar 

  8. De Shutter B, De Moor B (1995) The extended linear complementarity problem. Math Program 71(3):289–325. doi:10.1007/BF01590958

    Article  Google Scholar 

  9. De Shutter B, De Moor B (1995) Minimal realization in the max algebra is and extended linear complementarity problem. Syst Control Lett 25(2):103–111. doi:10.1016/0167-6911(94)00062-Z

    Article  Google Scholar 

  10. De Shutter B, De Moor B (1996) A method to find all solutions of a system of multivariate polynomial equalities and inequalities in the max algebra, discrete event dynamic systems. Theory Appl 6(2):115–138

    Google Scholar 

  11. De Shutter B, De Moor B (1994) Minimal realization in the max algebra, Technical Report 94–29, ESAT-SISTA. KU Leuven, Leuven, Belgium, May 1994

  12. de Berg M, van Kreveld M, Overmars M, Schwarzkopf O (1997) Computational Geometry, p 30. Springer, Berlin

    MATH  Google Scholar 

  13. Dula JH, Helgason RV, Venugopal N (1997) An algorithm for finding eth frame of a pointed finite conical hull. Inf J Comput 10(3):323–330

    Article  MathSciNet  Google Scholar 

  14. Dula JH, Lopez FJ (2006) Algorithms for the frame of a finitely generated unbounded polyhedron. Inf J Comput 18(1):97–110

    Article  MathSciNet  Google Scholar 

  15. Ferris MC, Pang JS (1997) Engineering and economic applications of complementarity problems. Soc Ind Appl Math 39(4):3–19

    MathSciNet  Google Scholar 

  16. Francis RL, White JA (1978) Facilities location and layout. In: Moder JJ, Elmaghraby SE (eds) Handbook of operations research: models and applications, vol 2. Van Nostrand Reinhold, New York, pp 229–267

    Google Scholar 

  17. Giang T, Bradshaw G, O’Sullivan C (2003) Complementarity based multiple point collision resolution. In: Fourth Irish workshop on computer graphics, 2003

  18. Gropp W (2008) Tutorial on MPI: the message-passing interface, mathematics and computer science division. http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/node101.html#Node101. Argonne National Laboratory, Argonne, IL, 60439

  19. Gropp W, Lusk E (2001) Installation and user’s guide to MPICH, a portable implementation of MPI, Version 1.2.5, the ch p4 device for workstation networks, mathematics and computer science division. Argonne National Laboratory, Argonne, IL, 60439

  20. Hart GD, Anitescu M (2003) A hard-constraint time-stepping approach for rigid multibody dynamics with joints, contact, and friction. In: Association for Computing Machinery, TAPIA’03, October 15–18 2003, p 34

  21. Koller D, Megiddo N, von Stengel B (1994) Fast algorithms for finding randomized strategies in game trees. In: Proceedings of the 26th annual ACM symposium on theory of computing, 1994, pp 750–759

  22. Lopez FJ (1999) Algorithms to obtain the frame of a finitely generated unbounded polyhedron. Doctoral Dissertation, University of Mississippi, University, MS

  23. Mathworks Inc. (2008) MATLAB Release 14 Online Documentation. http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/f3708.html, May 27 2008

  24. Mathworks Inc. (2008) MATLAB Release 14 online documentation. http://www.mathworks.com/access/helpdesk_r13/help/techdoc/MATLAB_external/MATLAB_external.html, May 27 2008

  25. MPICH2 Users Guide (2008) Version 1.0.7, Mathematics and science division. Argonne National Laboratory. Argonne, IL, 60439

  26. Murty KG (2008) Linear complementarity, linear and nonlinear programming, Internet edition, Chapter 1. http://ioe.engin.umich.edu/people/fac/books/murty/linear_complementarity_webbook/, May 27 2008

  27. NPACI (2006) Rocks User’s Guide. http://www.rocksclusters.org/rocks-documentation, UC Regents, 2002. Last Accessed 1 February 2006

  28. Stevens WR (1998) UNIX Network Programming, Networking, Networking API’s: Sockets and XTI, vol 1. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  29. Stevens WR (1998) UNIX Network Programming, Networking, Interprocess Communications, Vol 2, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  30. Sauer J, Schomer E (1998) Constraint-based a approach to rigid body dynamics for virtual reality applications. In: Proc ACM symposium on virtual reality software and technology, VRST’98, Taipei, Taiwan, November 2–5 1998

  31. Sadahiro T, Yamakita M (2003) Landing control of acrobat robot (SMB) satisfying various constraints. In: Proceedings of the 2003 IEEE international conference on robotics and automation, Taipei, Taiwan, September 14–19 2003

  32. Wallace SW, Wets RJ-B (1992) Preprocessing in stochastic programming: the case of linear programs. ORSA J Comput 4(1):45–59

    MATH  MathSciNet  Google Scholar 

  33. World Foundry Online Documentation Linear Complementarity Problem (2008) http://tenetti.org/cgi-bin/twiki/view.cgi/WorldFoundry/LinearComplementarityProblem, May 27 2008

  34. Wets RJ, Witzgall C (1967) Algorithms for frames and lineality spaces of cones. J Res Natl Bur Stand, B Math Math Rhys 71B:1–7

    MathSciNet  Google Scholar 

  35. Zucker SW (2008) Which computation runs in visual cortical columns? To appear in Problems in Systems Neuroscience. http://www.cs.yale.edu/homes/vision/zucker/papers/Zucker01_columns.ps.gz, May 27 2008. Oxford University Press

  36. Zapata S (2004) Analysis of cluster interconnection network topologies. Master’s Thesis, The University of Texas at El Paso, El Paso, Texas, July

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario E. Caire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caire, M.E., Lopez, F.J. & Williams, D.H. Distributed identification of the lineality space of a cone. J Supercomput 48, 163–182 (2009). https://doi.org/10.1007/s11227-008-0222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-008-0222-0

Keywords