Skip to main content

Advertisement

Log in

Mutually independent Hamiltonian cycles in dual-cubes

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The hypercube family Q n is one of the most well-known interconnection networks in parallel computers. With Q n , dual-cube networks, denoted by DC n , was introduced and shown to be a (n+1)-regular, vertex symmetric graph with some fault-tolerant Hamiltonian properties. In addition, DC n ’s are shown to be superior to Q n ’s in many aspects. In this article, we will prove that the n-dimensional dual-cube DC n contains n+1 mutually independent Hamiltonian cycles for n≥2. More specifically, let v i V(DC n ) for 0≤i≤|V(DC n )|−1 and let \(\langle v_{0},v_{1},\ldots ,v_{|V(\mathit{DC}_{n})|-1},v_{0}\rangle\) be a Hamiltonian cycle of DC n . We prove that DC n contains n+1 Hamiltonian cycles of the form \(\langle v_{0},v_{1}^{k},\ldots,v_{|V(\mathit{DC}_{n})|-1}^{k},v_{0}\rangle\) for 0≤kn, in which v k i v k i whenever kk′. The result is optimal since each vertex of DC n has only n+1 neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arabnia HR (1993) A transputer-based reconfigurable parallel system. In: Atkins S, Wagner AS (eds) Transputer research and applications (NATUG 6), Vancouver, Canada. IOS Press, Amsterdam, pp 153–169

    Google Scholar 

  2. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor theoretical properties and algorithms. Parallel Comput 21(11):1783–1806

    Article  Google Scholar 

  3. Bondy JA, Murty USR (1980) Graph theory with applications. North-Holland, New York

    Google Scholar 

  4. Caha R, Koubek V (2007) Spanning multi-paths in hypercubes. Discrete Math 307:2053–2066

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang C-H, Lin C-K, Huang H-M, Hsu L-H (2004) The super laceability of the hypercubes. Inf Process Lett 92:15–21

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen S-Y, Kao S-S (2008) The edge-pancyclicity of dual-cube extensive networks. In: 2nd WSEAS international conference on computer engineering and applications (CEA’08), Acapulco, Mexico, Jan 2008, pp 233–236

  7. Fink J (2007) Perfect matchings extend to Hamilton cycles in hypercubes. J Comb Theory, B 97:1074–1076

    Article  MATH  MathSciNet  Google Scholar 

  8. Harary F, Hayes JP, Wu H-J (1988) A survey of the theory of the hypercube graphs. Comput Math Appl 15:277–289

    Article  MATH  MathSciNet  Google Scholar 

  9. Hsieh S-Y, Weng Y-F (2009) Fault-tolerant embedding of pairwise independent Hamiltonian paths on a faulty hypercube with edge faults. Theory Comput Syst 45:407–425

    Article  MATH  MathSciNet  Google Scholar 

  10. Hsieh S-Y, Yu P-Y (2007) Fault-free mutually independent Hamiltonian cycles in hypercubes with faulty edges. J Comb Optim 13:153–162

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang Z, Wu J (2006) A limited-global information model for fault-tolerant routing in dual-cube. Int J Parallel, Emergent Distrib Syst 21:61–77

    Article  MathSciNet  Google Scholar 

  12. Kobeissi M, Mollard M (2004) Disjoint cycles and spanning graphs of hypercubes. Discrete Math 288:73–87

    Article  MATH  MathSciNet  Google Scholar 

  13. Lai C-J, Tsai C-H (2008) On embedding cycles into faulty dual-cubes. Inf Process Lett 109:147–150

    Article  MathSciNet  Google Scholar 

  14. Leighton FT (1992) Introduction to parallel algorithms and architecture: arrays, trees, hypercubes. Morgan Kaufmann, San Mateo

    MATH  Google Scholar 

  15. Li Y, Peng S (2000) Dual-cubes: a new interconnection network for high-performance computer clusters. In: Proceedings of the 2000 international computer symposium, workshop on computer architecture, ChiaYi, Taiwan, Dec 2000, pp 51–57

  16. Li Y, Peng S (2001) Fault-tolerant routing and disjoint paths in dual-cube: a new interconnection network. In: International conference on parallel and distributed systems (ICPADS 2001), Kyongju, Korea, Jun 2001, pp 315–322

  17. Li Y, Peng S, Chu W (2002) Hamiltonian cycle embedding for fault tolerance in dual-cube. In: IASTED international conference on networks, parallel and distributed processing and applications, Tsukuba, Japan, Oct 2002, pp 1–6

  18. Li Y, Peng S, Chu W (2004) Efficient collective communications in dual-cube. J Supercomput 28:71–90

    Article  MATH  Google Scholar 

  19. Li Y, Peng S, Chu W (2004) Binomial-tree fault tolerant routing in dual-cubes with large number of faulty nodes. In: International symposium on computational and information sciences (CIS’04), Shanghai, China, Dec 2004, pp 51–56

  20. Li Y, Peng S, Chu W (2005) Fault-tolerant cycle embedding in dual-cube with node faults. Int J High Perform Comput Netw 3:45–53

    Article  Google Scholar 

  21. Li T-K, Tsai C-H, Tan JJM, Hsu L-H (2003) Bipanconnectivity and edge-fault-tolerant bipancyclic of hypercubes. Inf Process Lett 21:107–110

    Article  MathSciNet  Google Scholar 

  22. Lin C-K, Huang H-M, Hsu L-H, Bau S (2005) Mutually Hamiltonian paths in star networks. Networks 46:110–117

    Article  MATH  MathSciNet  Google Scholar 

  23. Lin C-K, Huang H-M, Tan JJM, Hsu L-H (2009) The mutually Hamiltonian cycles of the pancake networks and the star networks. Discrete Math (accepted)

  24. Lin C-K, Shih Y-K, Tan JJM, Hsu L-H (2009) Mutually independent Hamiltonian cycles in some graphs. Ars Comb (accepted)

  25. Saad Y, Schultz MH (1988) Topological properties of hypercubes. IEEE Trans Comput 37:867–872

    Article  Google Scholar 

  26. Shih Y-K, Lin C-K, Frank Hsu D, Tan JJM, Hsu L-H (2009) The construction of MIH cycles in bubble-sort graphs. Int J Comput Math (accepted)

  27. Simmons G (1978) Almost all n-dimensional rectangular lattices are Hamilton laceable. Congr Numer 21:103–108

    MathSciNet  Google Scholar 

  28. Sun C-M, Lin C-K, Huang H-M, Hsu L-H (2006) Mutually independent Hamiltonian paths and cycles in hypercubes. J Interconnect Netw 7:235–255

    Article  Google Scholar 

  29. Tsai C-H (2004) Linear array and rring embeddings in conditional faulty hypercubes. Theor Comput Sci 314:431–443

    Article  MATH  Google Scholar 

  30. Tsai C-H (2007) Cycles embedding in hypercubes with node failures. Inf Process Lett 102:242–246

    Article  MATH  Google Scholar 

  31. Tsai C-H, Jiang S-Y (2007) Path bipancyclicity of hypercubes. Inf Process Lett 101:93–97

    Article  MATH  MathSciNet  Google Scholar 

  32. Arif Wani M, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multi-ring network. J Supercomput 25(1):43–63

    Article  MATH  Google Scholar 

  33. Xu J-M, Du Z-Z, Xu M (2005) Edge-fault-tolerant edge-bipancyclicity of hypercubes. Inf Process Lett 96:146–150

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Shin Kao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, YK., Chuang, HC., Kao, SS. et al. Mutually independent Hamiltonian cycles in dual-cubes. J Supercomput 54, 239–251 (2010). https://doi.org/10.1007/s11227-009-0317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-009-0317-2

Keywords