Skip to main content
Log in

A new parallel block aggregated algorithm for solving Markov chains

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new scalable parallel block aggregated iterative method (PBA) for computing the stationary distribution of a Markov chain. The PBA technique is based on aggregation of groups (block) of Markov chain states. Scalability of the PBA algorithm depends on varying the number of blocks and their size, assigned to each processor. PBA solves the aggregated blocks very efficiently using a modified LU factorization technique. Some Markov chains have been tested to compare the performance of PBA algorithm with other block techniques such as parallel block Jacobi and block Gauss–Seidel. In all the tested models PBA outperforms the other parallel block methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart WJ (1994) Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton

    MATH  Google Scholar 

  2. Gelenbe E, Labetoulle J, Marie R, Stewart WJ (1989) Reseaux de files d’attentes—modelisation et traitement numerique. Ed. des hommes et technique de l’AFCET

  3. Varga RS (1963) Matrix iterative analysis. Printice Hall, Englewood Cliffs

    MATH  Google Scholar 

  4. Saad Y (1981) Krylov subspace methods for solving asymmetric linear systems. Math Comput 37:105–126

    Article  MathSciNet  MATH  Google Scholar 

  5. Benzi M, Tuma M (2002) A parallel solver for large-scale Markov chains. Appl Numer Math 41:135–153

    Article  MathSciNet  MATH  Google Scholar 

  6. Couturier R, Jezequel F (2010) Solving large-scale linear systems in grid environment using Java. In: Proceeding of the International IPDPS’10, Atlanta, USA

    Google Scholar 

  7. Dayar T, Stewart WJ (2000) Comparison of partitioning techniques for two-level iterative methods on large, sparse Markov chains. SIAM J Sci Comput 21:1691–1705

    Article  MathSciNet  MATH  Google Scholar 

  8. Freund RW, Hochbruck M (1994) On the use of two QMR algorithms for solving singular systems and applications to Markov chain modelling. Numer Linear Algebra Appl 1:403–420

    Article  MathSciNet  MATH  Google Scholar 

  9. Philippe B, Saad Y, Stewart WJ (1992) Numerical methods in Markov chain modeling. Oper Res 40:1156–1179

    Article  MATH  Google Scholar 

  10. Migallon V, Penades J, Szyld DB (1999) Experimental studies of parallel iterative solutions of Markov chains with block partitions. In: Plateau B, Stewarts WJ, Silva M (eds) Numerical solution of Markov chains (NSMC’99), Prensas Universitarias de Zaragota, Zaragota, Spain, pp 49–64

    Google Scholar 

  11. Bylina J, Bylina B (2008) Merging Jacobi and Gauss–Seidel methods for solving Markov chains on computer cluster. In: Proceedings of the international multiconference on computer science and information technology, vol 3, pp 263–268

    Chapter  Google Scholar 

  12. Koury R, McAllister DF, Stewart WJ (1984) Iterative Methods for computing stationary distributions of nearly completely decomposable Markov chains. SIAM J Algebr Discrete Math 5(2):164–186

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao W-L, Stewart WJ (1985) Iterative aggregation/disaggregation techniques for nearly uncoupled Markov chains. J Assoc Comput Mach 32(3):702–719

    Article  MathSciNet  MATH  Google Scholar 

  14. Simon HA, Ando A (1961) Aggregation of variables in dynamic systems. Econometrica 29:111–138

    Article  MATH  Google Scholar 

  15. Courtois PJ (1977) Decomposability; queueing and computer system applications. Academic Press, Orlando

    MATH  Google Scholar 

  16. Stewart WJ, Wu W (1992) Numerical experiments with iteration and aggregation for Markov chains. ORSA J Comput 4(3) 336–350

    Article  MATH  Google Scholar 

  17. Courtois PJ, Semal P (1984) Bounds for the positive eigenvectors of nonnegative matrices and their approximation by decomposition. J Assoc Comput Mach 31:804–825

    Article  MathSciNet  MATH  Google Scholar 

  18. Meyer CD (1989) Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev 31(2):240–272

    Article  MathSciNet  MATH  Google Scholar 

  19. Schweitzer PJ (1983) Aggregation methods for large Markov chains. In: International workshop on applied mathematics and performance reliability models of computer communication systems. University of Pisa, Italy, pp 225–234

    Google Scholar 

  20. Choi H, Szyld DB (1996) Application of threshold partitioning of sparse matrices to Markov chains. In: Proceedings of the IEEE international computer performance and dependability symposium (IPDPS’96), Urbana-Champaign, Illinois, pp 158–165

    Chapter  Google Scholar 

  21. Stewart W, Touzene A (1994) On solving stochastic coupling matricesarizing in iterative aggregation/disaggregation method. Markov chains. In: Proceedings of the IEEE international modeling, analysis, and simulation on computer and telecommunication systems (MASCOT’94), Durham, North Carolina, pp 255–262

    Google Scholar 

  22. Klevans RL, Stewart WJ (1995) From queuing network to Markov chain: the XMARCA interface. Perform Eval 24:23–45

    Article  MATH  Google Scholar 

  23. Sur S, Bondhugula UKR, Mamidala A, Jin HW, Panda DK (2005) High performance based RDMA all-to-all broadcast in infiniband cluster. In: Lecture notes in computer science, vol 3769, pp 148–157

    Google Scholar 

  24. Arasu A, Novak J, Tomkins J (2002) PageRank computation and structure of the web: Experiments and algorithms. In: Proc eleventh inter world wide web conference (WWW2002). ACM, New York

    Google Scholar 

  25. Brin S, Page L (1998) The anatomy of large-scale hypertextual web search engine. Comput Netw ISDN Syst 30:107–117

    Article  Google Scholar 

  26. Cho GE, Meyer CD (2001) Comparison of perturbation bound for the stationary distribution of Markov chain. Linear Algebra Appl 335:137–150

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderezak Touzene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touzene, A. A new parallel block aggregated algorithm for solving Markov chains. J Supercomput 62, 573–587 (2012). https://doi.org/10.1007/s11227-011-0737-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-011-0737-7

Keywords

Navigation