Skip to main content
Log in

A new high performance approach: merging optimal multicast sessions for supporting multisource routing

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Each single source multicast session (SSMS) transmits packets from a source node s i to a group of destination nodes t i , i=1,2,…,n. An SSMS’s path can be established with a routing algorithm, which constructs multicast path between source and destinations. Also, for each SSMS, the routing algorithm must be performed once. When the number of SSMS increases to N≥2, the routing algorithm must be separately performed N≥2 times because the number of source nodes increase to N≥2 (for each SSMS the routing algorithm must be performed once). This causes that time of computation and bandwidth consumption to grow. To remove this problem, in this paper, we will present a new approach for merging different SSMSs to make a new multicast session, which is performed only with one execution of a routing algorithm. The new approach, merging different sessions together, is based on the optimal resource allocation and Constraint Based Routing (CBR). We will show that as compared to other available routing algorithms, it improves time of computation and bandwidth consumption and increases data rate and network efficiency. The new approach uses CBR and merges more than one single source multicast session (SSMS) problem to one multisource multicast session (MSMS) problem. By solving one MSMS problem instead of solving more than one SSMS, we can obtain an optimal solution that is more efficient than optimal solutions of SSMS problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Isazadeh A, Heydarian M (2008) Optimal multicast multichannel routing in computer networks. Comput Commun 31(17):4149–4161

    Article  Google Scholar 

  2. Isazadeh A, Heydarian M (2010) Traffic distribution for end-to-end qos routing with multicast multichannel services. J Supercomput 52(1):47–81

    Article  Google Scholar 

  3. Isazadeh A, Heydarian M (2012) Distributed multicast multichannel paths. Telecommun Syst J 50(3)

  4. Khamayseh Y, Obiedat G, Yassin MB (2011) Mobility and load aware routing protocol for ad hoc networks. J King Saud Univ, Comput Inf Sci 23(2):105–113

    Google Scholar 

  5. Bistarelli S, Montanari U, Rossi F, Santini F (2007) Modelling multicast qos routing by using best-tree search in and-or graphs and soft constraint logic programming. Electron Notes Theor Comput Sci 6:111–127

    Article  Google Scholar 

  6. Still C, Westerlund T (2009) A linear programming-based optimization algorithm for solving nonlinear programming problems. Eur J Oper Res 200:658–670

    Article  MathSciNet  Google Scholar 

  7. Oliveira CAS, Pardalos PM (2005) A survey of combinatorial optimization problems in multicast routing. Comput Oper Res 32(8):1953–1981

    Article  MATH  Google Scholar 

  8. Wang B, Hou JC (2004) An efficient qos routing algorithm for quorumcast communication. Comput Netw 44(1):43–61

    Article  MathSciNet  Google Scholar 

  9. Rezazadeh H, Mahini R, Zarei M (2010) Solving a dynamic virtual cell formation problem by linear programming embedded particle swarm optimization algorithm. Appl Soft Comput 11:3160–3169

    Article  Google Scholar 

  10. Sun J, Fang W, Wu X, Xie Z, Xu W (2011) Qos multicast routing using a quantum-behaved particle swarm optimization algorithm. Eng Appl Artif Intell 24(1):123–131

    Article  Google Scholar 

  11. Cao F, Yuan Y (2011) Learning errors of linear programming support vector regression. Appl Math Model 35(7):1820–1828

    Article  MathSciNet  MATH  Google Scholar 

  12. Eusébio A, Figueira JR (2009) On the computation of all supported efficient solutions in multi-objective integer network flow problems. Eur J Oper Res 199(4):68–76

    Article  MATH  Google Scholar 

  13. Zhu X, Setton E, Girod B (2005) Congestion-distortion optimized video transmission over ad hoc networks. Signal Process Image Commun 20(8):773–783

    Article  Google Scholar 

  14. Pinto A, Ricardo M (2011) On performance of group key distribution techniques when applied to IPTV services. Comput Commun 34(14):1708–1721

    Article  Google Scholar 

  15. Vinod J, Mulugu S (2011) Application: IPTV. Deploying next generation multicast-enabled applications

    Google Scholar 

  16. Matrawy A, Lambadaris I, Huang C (2002) Mpeg4 traffic modeling using the transform expand sample methodology. In: IEEE Workshop on Networked Applications, pp 249–256

    Google Scholar 

  17. Matrawy A (2003) A rate adaptation algorithm for multicast sources in priority-based ip networks. IEEE Commun Lett 7(2):94–96

    Article  Google Scholar 

  18. van Lunteren J, Engbersen T (2003) Fast and scalable packet classification. IEEE Trans Commun 21(4):560–570

    Google Scholar 

  19. Khan S, Watson R, Shoja GC (2003) Optimal quality of service routing and admission control using the utility model. Future Gener Comput Syst 19(7):1063–1073

    Article  Google Scholar 

  20. Cova TJ, Johnson JP (2003) A network flow model for lane-based evacuation routing. Transp Res, Part A, Policy Pract 37(7):579–604

    Article  Google Scholar 

  21. Ebrahim RM, Razmi J (2009) A hybrid meta heuristic algorithm for bi-objective minimum cost flow (bmcf) problem. Adv Eng Softw 40(4):1056–1062

    Article  MATH  Google Scholar 

  22. Wang Z (2001) Internet QoS: architectures and mechanisms for quality of service. Networking AND Morgan Kaufmann AND Bell Labs AND Lucent Technology

  23. Atwood JW, Islam S (2010) Sender access and data distribution control for inter-domain multicast groups. Comput Netw 54(10):1646–1671

    Article  MATH  Google Scholar 

  24. Khadivi P, Samavi S, Todd TD (2008) Multi-constraint qos routing using a new single mixed metrics. J Netw Comput Appl 31(4):656–676

    Article  Google Scholar 

  25. Kilavuz MO, Yuksel M (2011) Path approximation for multi-hop wireless routing under application-based accuracy constraints. Comput Netw 71(9)

  26. Mérindol P, Francois P, Bonaventure O, Cateloin S, Pansiot J-J (2011) An efficient algorithm to enable path diversity in link state routing networks. Comput Netw 55(5):1132–1149

    Article  MATH  Google Scholar 

  27. Ghoseiri K, Ghannadpour SF (2010) Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm. Appl Soft Comput 10(4):1096–1107

    Article  Google Scholar 

  28. Wen UP, Wang WC, Yang CB (2007) Traffic engineering and congestion control for open shortest path. Omega 35(1):671–682

    Article  Google Scholar 

  29. Ford LR, Fulkerson DR (1958) Constructing maximal dynamics flows from static flows. Oper Res 6:419–433

    Article  MathSciNet  Google Scholar 

  30. Deep K, Singh KP, Kansal ML, Mohan C (2011) An interactive method using genetic algorithm for multi-objective optimization problems modeled in fuzzy environment. Expert Syst Appl 38(4):1659–1667

    Article  Google Scholar 

  31. Sun J, Fang W, Wu X, Xie Z, Xu W (2011) Qos multicast routing using a quantum-behaved particle swarm optimization algorithm. Eng Appl Artif Intell 24(1):123–131

    Article  Google Scholar 

  32. Younes A (2011) Multicast routing with bandwidth and delay constraints based on genetic algorithms. Egypt Inform J 12(2):107–114

    Article  MathSciNet  Google Scholar 

  33. Biradar RC, Manvi SS (2012) Review of multicast routing mechanisms in mobile ad hoc networks. J Netw Comput Appl 35(1):221–239

    Article  Google Scholar 

  34. Li F, Fang Y, Hu F, Liu X (2011) Load-aware multicast routing metrics in multi-radio multi-channel wireless mesh networks. Comput Netw 55(9):2150–2167

    Article  Google Scholar 

  35. Li Z, Li D, Liu M (2010) Interference and power constrained broadcast and multicast routing in wireless ad hoc networks using directional antennas. Comput Commun 33(12):1428–1439

    Article  Google Scholar 

  36. Wang H, Meng X, Li S, Xu H (2010) A tree-based particle swarm optimization for multicast routing. Comput Netw 54(15):2775–2786

    Article  MATH  Google Scholar 

  37. Cheng H, Wang X, Yang S, Huang M, Cao J (2010) Qos multicast tree construction in ip/dwdm optical internet by bio-inspired algorithms. J Netw Comput Appl 33(4):512–522

    Article  Google Scholar 

  38. Cui Y, Wang S, Das SK (2011) Distributed dynamic mobile multicast. J Parallel Distrib Comput 71(9):1215–1224

    Article  MATH  Google Scholar 

  39. Stojmenovic I, Nayak A, Kuruvila J, Ovalle-Martinez F, Villanueva-Pena E (2005) Physical layer impact on the design and performance of routing and broadcasting protocols in ad hoc and sensor networks. Comput Commun 28(10):1138–1151

    Article  Google Scholar 

  40. Chatterjee S, Bassiouni MA (1998) Scalable and efficient broadcasting algorithms for very large internetworks. Comput Commun 21(10):912–923

    Article  Google Scholar 

  41. Shen Z (2007) A generalized broadcasting schema for the mesh structures. Appl Math Comput 186(2):1293–1310

    Article  MathSciNet  MATH  Google Scholar 

  42. Arango J, Efrat A, Ramasubramanian S, Pink S, Krunz M (2010) Retransmission and backoff strategies for wireless broadcasting. Ad Hoc Netw 8(2):77–95

    Article  Google Scholar 

  43. Makela A, Siikavirta S, Manner J (2012) Comparison of load-balancing approaches for multipath connectivity. Comput Netw 56(6):2179–2195

    Article  Google Scholar 

  44. Serpanos D, Wolf T (2011) Architecture of network systems. Systems on silicon. Morgan Kaufmann, San Mateo

    Google Scholar 

  45. Liu D, Barber B, DiGrande L (2009) Cisco CCNA/CCENT exam 640-802, 640-822, 640-816 preparation kit. Cisco CCNA certification candidates. SYNGRESS

  46. Reza Rahimi M, Bais A, Sarshar N (2012) On fair and optimal multi-source ip-multicast. Comput Netw 56(4):1503–1524

    Article  Google Scholar 

  47. Wang Y, Wu J (2012) A dynamic multicast tree based routing scheme without replication in delay tolerant networks. J Parallel Distrib Comput 72(4):424–436

    Article  Google Scholar 

  48. Leela R, Thanulekshmi N, Selvakumar S (2011) Multi-constraint qos unicast routing using genetic algorithm (muruga). Appl Soft Comput 11(2):1753–1761

    Article  Google Scholar 

  49. Xue G (2003) Optimal multichannel datatransmission in computer networks. Comput Commun 26(7):759–765

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by a research fund Number 217/sad/461 from Shahid Madani Azarbaijan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Heydarian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heydarian, M., Mogavi, R.H. A new high performance approach: merging optimal multicast sessions for supporting multisource routing. J Supercomput 63, 871–896 (2013). https://doi.org/10.1007/s11227-012-0835-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-012-0835-1

Keywords

Navigation