Abstract
There is an increasing need for fast and efficient algorithms for the automatic analysis of remote-sensing images. In this paper we address the implementation of the semantic classification of aerial images with general-purpose graphics-processing units (GPGPUs). We propose the calculation of a local Gabor-based structural texture descriptor and a structural texture similarity metric combined with a nearest-neighbor classifier and image-to-class similarity on CUDA supported graphics-processing units. We first present the algorithm and then describe the GPU implementation and optimization with the CUDA programming model. We then evaluate the results of the algorithm on a dataset of aerial images and present the execution times for the sequential and parallel implementations of the whole algorithm as well as measurements only for the selected steps of the algorithm. We show that the algorithms for the image classification can be effectively implemented on the GPUs. In our case, the presented algorithm is around 39 times faster on the Tesla C1060 unit than on the Core i5 650 CPU, while keeping the same success rate of classification.











Similar content being viewed by others
References
Belloch JA, Gonzalez A, Martínez-Zaldívar FJ, Vidal AM (2011) Real-time massive convolution for audio applications on GPU. J Supercomput 58(3):449–457. doi:10.1007/s11227-011-0610-8. http://www.springerlink.com/index/10.1007/s11227-011-0610-8
Cecilia JM, Abellán JL, Fernández J, Acacio ME, García JM, Ujaldón M (2012) Stencil computations on heterogeneous platforms for the Jacobi method: GPUs versus cell BE. J Supercomput 62(2):787–803. doi:10.1007/s11227-012-0749-y. http://www.springerlink.com/index/10.1007/s11227-012-0749-y
Che S, Boyer M, Meng J, Tarjan D, Sheaffer J, Skadron K (2008) A performance study of general-purpose applications on graphics processors using CUDA. J Parallel Distrib Comput 68(10):1370–1380. doi:10.1016/j.jpdc.2008.05.014
Comput JPD (2012) G-MSA—a GPU-based, fast and accurate algorithm for multiple. J Parallel Distrib Comput 73(1):32–41. doi:10.1016/j.jpdc.2012.04.004
Fatone L, Giacinti M, Mariani F, Recchioni MC, Zirilli F (2012) Parallel option pricing on GPU: barrier options and realized variance options. J Supercomput 62(3):1480–1501. doi:10.1007/s11227-012-0813-7. http://www.springerlink.com/index/10.1007/s11227-012-0813-7
Gravvanis GA, Filelis-Papadopoulos CK, Giannoutakis KM (2011) Solving finite difference linear systems on GPUs: CUDA based parallel explicit preconditioned biconjugate conjugate gradient type methods. J Supercomput 61(3):590–604. doi:10.1007/s11227-011-0619-z. http://www.springerlink.com/index/10.1007/s11227-011-0619-z
Halfhill T (2008) Parallel processing with CUDA. Microprocessor report pp 1–8
Manjunath B, Ma W (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842. doi:10.1109/34.531803
Nimmagadda VK, Akoglu A, Hariri S, Moukabary T (2011) Cardiac simulation on multi-GPU platform. J Supercomput 59(3):1360–1378. doi:10.1007/s11227-010-0540-x. http://www.springerlink.com/index/10.1007/s11227-010-0540-x
NVIDIA Corporation (2010) NVIDIA TESLA Computing Processor Datasheet. http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C1060_US_Jan10_lores_r1.pdf
NVIDIA Corporation (2011) CUDA C best practices guide, version 4.0. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
NVIDIA Corporation (2011) CUDA CUFFT Library. http://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CUFFT_Library.pdf
NVIDIA Corporation (2011) NVIDIA CUDA C Programming Guide, Version 4.0. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
Owens J, Houston M, Luebke D, Green S, Stone J, Phillips J (2008) GPU computing. Proc IEEE 96(5):879–899. doi:10.1109/JPROC.2008.917757
Owens J, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn A, Purcell T (2007) A survey of general-purpose computation on graphics hardware. Comput Graph Forum 26(1):80–113. doi:10.1111/j.1467-8659.2007.01012.x
Risojevic V, Babic Z (2011) Aerial image classification using structural texture similarity. In: IEEE international symposium on signal processing and information technology (ISSPIT), pp 190–195. doi:10.1109/ISSPIT.2011.6151558
Risojevic V, Momic S, Babic Z (2011) Gabor descriptors for aerial image classification. In: Dobnikar A, Lotric U, Ster B (eds) ICANNGA (2). Lecture notes in computer science, vol 6594. Springer, Berlin, pp 51–60
van de Sande K, Gevers T, Snoek C (2011) Empowering visual categorization with the GPU. IEEE Trans Multimed 13(1):60–70. doi:10.1109/TMM.2010.2091400
Schellmann M, Gorlatch S, Meiländer D, Kösters T, Schäfers K, Wübbeling F, Burger M (2010) Parallel medical image reconstruction: from graphics processing units (GPU) to grids. J Supercomput 57(2):151–160. doi:10.1007/s11227-010-0397-z. http://www.springerlink.com/index/10.1007/s11227-010-0397-z
Thibault J, Senocak I (2012) Accelerating incompressible flow computations with a Pthreads-CUDA implementation on small-footprint multi-GPU platforms. J Supercomput 59:693–719. doi:10.1007/s11227-010-0468-1
Valero P, Sánchez JL, Cazorla D, Arias E (2011) A GPU-based implementation of the MRF algorithm in ITK package. J Supercomput 58(3):403–410. http://www.springerlink.com/index/10.1007/s11227-011-0597-1
Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. doi:10.1109/TIP.2003.819861
Wang Z, Bovik AC (2009) Mean squared error: love it or leave it. IEEE Signal Process Mag 26(1):98–117
Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, GIS’10. ACM, New York, pp 270–279. doi:10.1145/1869790.1869829. http://doi.acm.org/10.1145/1869790.1869829
Zhao X, Reyes M, Pappas T, Neuhoff D (2008) Structural texture similarity metrics for retrieval applications. In: Proceedings of 15th IEEE international conference on image processing ICIP 2008, San Diego, CA, USA, pp 1196–1199
Zujovic J, Pappas TN, Neuhoff DL (2009) Structural similarity metrics for texture analysis and retrieval. In: Proceedings of the 16th IEEE international conference on image processing, ICIP’09. IEEE Press, Piscataway, pp 2201–2204. http://portal.acm.org/citation.cfm?id=1819298.1819352
Acknowledgements
This research was supported by Slovenian Research Agency (ARRS) under grant P2-0359 (National research program Pervasive computing) and by Slovenian Research Agency (ARRS) and Ministry of Civil Affairs, Bosnia and Herzegovina, under grant BI-BA/10-11-026 (Bilateral Collaboration Project) and by the Ministry of Science and Technology of the Republic of Srpska under contract 06/0-020/961-220/11 (Automatic land cover/land use classification).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Češnovar, R., Risojević, V., Babić, Z. et al. A GPU implementation of a structural-similarity-based aerial-image classification. J Supercomput 65, 978–996 (2013). https://doi.org/10.1007/s11227-013-0875-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-013-0875-1