Skip to main content
Log in

A GPU implementation of a structural-similarity-based aerial-image classification

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

There is an increasing need for fast and efficient algorithms for the automatic analysis of remote-sensing images. In this paper we address the implementation of the semantic classification of aerial images with general-purpose graphics-processing units (GPGPUs). We propose the calculation of a local Gabor-based structural texture descriptor and a structural texture similarity metric combined with a nearest-neighbor classifier and image-to-class similarity on CUDA supported graphics-processing units. We first present the algorithm and then describe the GPU implementation and optimization with the CUDA programming model. We then evaluate the results of the algorithm on a dataset of aerial images and present the execution times for the sequential and parallel implementations of the whole algorithm as well as measurements only for the selected steps of the algorithm. We show that the algorithms for the image classification can be effectively implemented on the GPUs. In our case, the presented algorithm is around 39 times faster on the Tesla C1060 unit than on the Core i5 650 CPU, while keeping the same success rate of classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Belloch JA, Gonzalez A, Martínez-Zaldívar FJ, Vidal AM (2011) Real-time massive convolution for audio applications on GPU. J Supercomput 58(3):449–457. doi:10.1007/s11227-011-0610-8. http://www.springerlink.com/index/10.1007/s11227-011-0610-8

    Article  Google Scholar 

  2. Cecilia JM, Abellán JL, Fernández J, Acacio ME, García JM, Ujaldón M (2012) Stencil computations on heterogeneous platforms for the Jacobi method: GPUs versus cell BE. J Supercomput 62(2):787–803. doi:10.1007/s11227-012-0749-y. http://www.springerlink.com/index/10.1007/s11227-012-0749-y

    Article  Google Scholar 

  3. Che S, Boyer M, Meng J, Tarjan D, Sheaffer J, Skadron K (2008) A performance study of general-purpose applications on graphics processors using CUDA. J Parallel Distrib Comput 68(10):1370–1380. doi:10.1016/j.jpdc.2008.05.014

    Article  Google Scholar 

  4. Comput JPD (2012) G-MSA—a GPU-based, fast and accurate algorithm for multiple. J Parallel Distrib Comput 73(1):32–41. doi:10.1016/j.jpdc.2012.04.004

    Google Scholar 

  5. Fatone L, Giacinti M, Mariani F, Recchioni MC, Zirilli F (2012) Parallel option pricing on GPU: barrier options and realized variance options. J Supercomput 62(3):1480–1501. doi:10.1007/s11227-012-0813-7. http://www.springerlink.com/index/10.1007/s11227-012-0813-7

    Article  Google Scholar 

  6. Gravvanis GA, Filelis-Papadopoulos CK, Giannoutakis KM (2011) Solving finite difference linear systems on GPUs: CUDA based parallel explicit preconditioned biconjugate conjugate gradient type methods. J Supercomput 61(3):590–604. doi:10.1007/s11227-011-0619-z. http://www.springerlink.com/index/10.1007/s11227-011-0619-z

    Article  MathSciNet  Google Scholar 

  7. Halfhill T (2008) Parallel processing with CUDA. Microprocessor report pp 1–8

  8. Manjunath B, Ma W (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842. doi:10.1109/34.531803

    Article  Google Scholar 

  9. Nimmagadda VK, Akoglu A, Hariri S, Moukabary T (2011) Cardiac simulation on multi-GPU platform. J Supercomput 59(3):1360–1378. doi:10.1007/s11227-010-0540-x. http://www.springerlink.com/index/10.1007/s11227-010-0540-x

    Article  Google Scholar 

  10. NVIDIA Corporation (2010) NVIDIA TESLA Computing Processor Datasheet. http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C1060_US_Jan10_lores_r1.pdf

  11. NVIDIA Corporation (2011) CUDA C best practices guide, version 4.0. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf

  12. NVIDIA Corporation (2011) CUDA CUFFT Library. http://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CUFFT_Library.pdf

  13. NVIDIA Corporation (2011) NVIDIA CUDA C Programming Guide, Version 4.0. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

  14. Owens J, Houston M, Luebke D, Green S, Stone J, Phillips J (2008) GPU computing. Proc IEEE 96(5):879–899. doi:10.1109/JPROC.2008.917757

    Article  Google Scholar 

  15. Owens J, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn A, Purcell T (2007) A survey of general-purpose computation on graphics hardware. Comput Graph Forum 26(1):80–113. doi:10.1111/j.1467-8659.2007.01012.x

    Article  Google Scholar 

  16. Risojevic V, Babic Z (2011) Aerial image classification using structural texture similarity. In: IEEE international symposium on signal processing and information technology (ISSPIT), pp 190–195. doi:10.1109/ISSPIT.2011.6151558

    Chapter  Google Scholar 

  17. Risojevic V, Momic S, Babic Z (2011) Gabor descriptors for aerial image classification. In: Dobnikar A, Lotric U, Ster B (eds) ICANNGA (2). Lecture notes in computer science, vol 6594. Springer, Berlin, pp 51–60

    Google Scholar 

  18. van de Sande K, Gevers T, Snoek C (2011) Empowering visual categorization with the GPU. IEEE Trans Multimed 13(1):60–70. doi:10.1109/TMM.2010.2091400

    Article  Google Scholar 

  19. Schellmann M, Gorlatch S, Meiländer D, Kösters T, Schäfers K, Wübbeling F, Burger M (2010) Parallel medical image reconstruction: from graphics processing units (GPU) to grids. J Supercomput 57(2):151–160. doi:10.1007/s11227-010-0397-z. http://www.springerlink.com/index/10.1007/s11227-010-0397-z

    Article  Google Scholar 

  20. Thibault J, Senocak I (2012) Accelerating incompressible flow computations with a Pthreads-CUDA implementation on small-footprint multi-GPU platforms. J Supercomput 59:693–719. doi:10.1007/s11227-010-0468-1

    Article  Google Scholar 

  21. Valero P, Sánchez JL, Cazorla D, Arias E (2011) A GPU-based implementation of the MRF algorithm in ITK package. J Supercomput 58(3):403–410. http://www.springerlink.com/index/10.1007/s11227-011-0597-1

    Article  Google Scholar 

  22. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  23. Wang Z, Bovik AC (2009) Mean squared error: love it or leave it. IEEE Signal Process Mag 26(1):98–117

    Article  Google Scholar 

  24. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, GIS’10. ACM, New York, pp 270–279. doi:10.1145/1869790.1869829. http://doi.acm.org/10.1145/1869790.1869829

    Google Scholar 

  25. Zhao X, Reyes M, Pappas T, Neuhoff D (2008) Structural texture similarity metrics for retrieval applications. In: Proceedings of 15th IEEE international conference on image processing ICIP 2008, San Diego, CA, USA, pp 1196–1199

    Chapter  Google Scholar 

  26. Zujovic J, Pappas TN, Neuhoff DL (2009) Structural similarity metrics for texture analysis and retrieval. In: Proceedings of the 16th IEEE international conference on image processing, ICIP’09. IEEE Press, Piscataway, pp 2201–2204. http://portal.acm.org/citation.cfm?id=1819298.1819352

    Google Scholar 

Download references

Acknowledgements

This research was supported by Slovenian Research Agency (ARRS) under grant P2-0359 (National research program Pervasive computing) and by Slovenian Research Agency (ARRS) and Ministry of Civil Affairs, Bosnia and Herzegovina, under grant BI-BA/10-11-026 (Bilateral Collaboration Project) and by the Ministry of Science and Technology of the Republic of Srpska under contract 06/0-020/961-220/11 (Automatic land cover/land use classification).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rok Češnovar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Češnovar, R., Risojević, V., Babić, Z. et al. A GPU implementation of a structural-similarity-based aerial-image classification. J Supercomput 65, 978–996 (2013). https://doi.org/10.1007/s11227-013-0875-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-013-0875-1

Keywords