Abstract
In recent years, urban models based on Cellular Automata (CA) are becoming increasingly sophisticated and are being applied to real-world problems covering large geographical areas. As a result, they often require extended computing times. However, in spite of the improved availability of parallel computing facilities, the applications in the field of urban and regional dynamics are almost always based on sequential algorithms. This paper makes a contribution toward a wider use in the field of geosimulation of high performance computing techniques based on General-Purpose computing on Graphics Processing Units (GPGPU). In particular, we investigate the parallel speedup achieved by applying GPGPU to a popular constrained urban CA model. The major contribution of this work is in the specific modeling we propose to achieve significant gains in computing time, while maintaining the most relevant features of the traditional sequential model.







Similar content being viewed by others
References
Armstrong MP (2000) Geography and computational science. Ann Assoc Am Geogr 90(1):146–156
Avolio MV, Crisci GM, Gregorio SD, Rongo R, Spataro W, Trunfio GA (2006) SCIARA γ2: an improved cellular automata model for lava flows and applications to the 2002 Etnean crisis. Comput Geosci 32(7):876–889
Besussi E, Cecchini A, Rinaldi E (1998) The diffused city of the Italian North-East: identification of urban dynamics using cellular automata urban models. Comput Environ Urban Syst 22(5):497–523
Blecic I, Cecchini A (2008) Design beyond complexity: possible futures? Prediction or design? (and techniques and tools to make it possible). Futures 40(6):537–551. doi:10.1016/j.futures.2007.11.004
Blecic I, Cecchini A, Trunfio GA (2008) A software infrastructure for multi-agent geosimulation applications. In: Computational science and its applications ICCSA 2008. LNCS, vol 5072. Springer, Berlin, pp 375–388
Blecic I, Borruso A, Cecchini A, D’Argenio A, Montagnino F, Trunfio GA (2009) A cellular automata-ready GIS infrastructure for geosimulation and territorial analysis. In: Computational science and its applications—ICCSA 2009. LNCS, vol 5592, pp 313–327
Blecic I, Cecchini A, Trunfio GA (2009) A general-purpose geosimulation infrastructure for spatial decision support. Trans Comput Sci 6:200–218
Blecic I, Cecchini A, Trunfio GA (2009) A multi-agent geosimulation infrastructure for planning. In: Murgante B, Borruso G, Lapucci A (eds) Geocomputation and urban planning. Studies in computational intelligence, vol 176. Springer, Berlin, pp 237–253
Blecic I, Cecchini A, Trunfio GA (2010) A comparison of evolutionary algorithms for automatic calibration of constrained cellular automata. In: ICCSA 2010, part I. LNCS, vol 6016. Springer, Berlin, pp 166–181
Blecic I, Cecchini A, Prastacos P, Trunfio GA, Verigos E Modelling urban dynamics with cellular automata: a model of the city of Heraklion. In: 7th AGILE conference on geographic information science
Cecchini A (1996) Urban modelling by means of cellular automata: generalised urban automata with the help on-line (AUGH) model. Environ Plan B 23:721–732
Cecchini A, Trunfio GA (2007) Supporting urban planning with CAGE: a software environment to simulate complex systems. Adv Complex Syst 10(supp02):309–325
Cheng J, Masser I (2004) Understanding spatial and temporal processes of urban growth: cellular automata modelling. Environ Plan B, Plan Des 31(2):167–194
Clarke KC (2003) Geocomputation’s future at the extremes: high performance computing and nanoclients. Parallel Comput 29(10):1281–1295
Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan B, Plan Des 24(2):247–261
Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46
CUDA C best practices guide (2012)
CUDA C programming guide (2010). v 3.2
de Almeida CM, Batty M, Monteiro AMV, Câmara G, Soares-Filho BS, Cerqueira GC, Pennachin CL (2003) Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Comput Environ Urban Syst 27(5):481–509
Engelen G, White R, de Nijs T (2005) Environment explorer: spatial support system for the integrated assessment of socio-economic and environmental policies in the Netherlands. Integr Assess 4(2)
Goldstein NC (2003) Brains vs. Brawn-comparative strategies for the calibration of a cellular automata-based urban growth model. In: Proceedings of the 7-th international conference on GeoComputation, 8–10 September
Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel programming with the message passing interface, 2nd edn. MIT Press, Cambridge
Guan Q, Clarke KC (2010) A general-purpose parallel raster processing programming library test application using a geographic cellular automata model. Int J Geogr Inf Sci 24(5):695–722
He C, Okada N, Zhang Q, Shi P, Li J (2008) Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landsc Urban Plan 86(1):79–91
Hoberock J, Bell N (2010) Thrust: A parallel template library. http://code.google.com/p/thrust/. Version 1.3.0
Horn D (2005) Stream reduction operations for GPGPU applications. In: GPU gtems 2, pp 573–589. Addison Wesley, Reading
Lavalle C, Baranzelli C, e Silva FB, Mubareka S, Gomes CR, Koomen E, Hilferink M (2011) A high resolution land use/cover modelling framework for Europe: introducing the EU-ClueScanner100 model. In: ICCSA 2011. LNCS. Springer, Berlin, pp 60–75
NCGIA (2003) Project gigalopolis. Website, http://www.ncgia.ucsb.edu/projects/gig/
Oliverio M, Spataro W, D’Ambrosio D, Rongo R, Spingola G, Trunfio GA (2011) OpenMP parallelization of the SCIARA cellular automata lava flow model: performance analysis on shared-memory computers. Procedia CS 4:271–280
Rongo R, Spataro W, D’Ambrosio D, Avolio MV, Trunfio GA, Gregorio SD (2008) Lava flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt. Etna volcano. Fundam Inform 87(2):247–267
Rustico E, Bilotta G, Hérault A, Negro CD, Gallo G (2011) Scalable multi-GPU implementation of the MAGFLOW simulator. Ann Geophys 54(5)
Santé I, García AM, Miranda D, Crecente R (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan 96(2):108–122
Spataro W, D’Ambrosio D, Rongo R, Trunfio GA (2004) An evolutionary approach for modelling lava flows through cellular automata. In: ACRI 2004, proceedings. LNCS, vol 3305. Springer, Berlin, pp 725–734
van Vliet J, Bregt AK, Hagen-Zanker A (2011) Revisiting kappa to account for change in the accuracy assessment of land-use change models. Ecol Model 222(8):1367–1375
Visser H, de Nijs TCM (2006) The map comparison kit. Environ Model Softw 21(3):346–358
White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns. Environ Plan A 25:1175–1199
White R, Engelen G (2000) High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comput Environ Urban Syst 24:383–400
White R, Engelen G, Uljee I (1997) The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environ Plan B, Plan Des 24(3):323–343
Wu F (1998) SimLand: a prototype to simulate land conversion through the integrated GIS and ca with ahp-derived transition rules. Int J Geogr Inf Sci 12(1):63–82
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Blecic, I., Cecchini, A. & Trunfio, G.A. Cellular automata simulation of urban dynamics through GPGPU. J Supercomput 65, 614–629 (2013). https://doi.org/10.1007/s11227-013-0913-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-013-0913-z