Skip to main content
Log in

SCIDDICA-SS3: a new version of cellular automata model for simulating fast moving landslides

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Cellular Automata (CA) are discrete and parallel computational models useful for simulating dynamic systems that evolve on the basis on local interactions. Some natural events, such as some types of landslides, fall into this type of phenomena and lend themselves well to be simulated with this approach. This paper describes the latest version of the SCIDDICA CA family models, specifically developed to simulate debris-flows type landslides. The latest model of the family, named SCIDDICA-SS3, inherits all the features of its predecessor, SCIDDICA-SS2, with the addition of a particular strategy to manage momentum. The introduction of the latter permits a better approximation of inertial effects that characterize some rapid debris flows. First simulations attempts of real landslides with SCIDDICA-SS3 have produced quite satisfactory results, comparable with the previous model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stein DL (1989) Lectures in the sciences of complexity. Addison–Wesley, Redwood City

    MATH  Google Scholar 

  2. von Neumann J (1966) Theory of self reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  3. Kohonen T (1984) Self-organization and associative memory. Springer, Heidelberg

    MATH  Google Scholar 

  4. Holland JH (1975) Adaptation in natural and artificial systems. Univ of Michigan Press, Ann Arbor

    Google Scholar 

  5. Di Gregorio S, Serra R (1999) An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future generation computer systems, vol 16, pp 259–271

    Google Scholar 

  6. McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61:2332–2335

    Article  Google Scholar 

  7. Succi S, Benzi R, Higuera F (1991) The lattice Boltzmann equation: a new tool for computational fluid dynamics. Physica 47(D):219–230

    Google Scholar 

  8. Toffoli T (1984) Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica 10(D):117–127

    MathSciNet  Google Scholar 

  9. Segre E, Deangeli C (1995) Cellular automaton for realistic modeling of landslides. Nonlinear Process Geophys 2(1):1–15

    Article  Google Scholar 

  10. Clerici A, Perego S (2000) Simulation of the parma river blockage by the Corniglio landslide (Northern Italy). Geomorphology 33:1–23

    Article  Google Scholar 

  11. Salles T, Lopez S, Cacas MC, Mulder T (2007) Cellular automata model of density currents. Geomorphology 88:1–20

    Article  Google Scholar 

  12. Di Gregorio S, Nicoletta F, Rongo R, Sorriso-Valvo M, Spezzano G, Talia D (1995) Landslide simulation by cellular automata in a parallel environment. In: Mango Furnari M (ed) Proceedings of the 2nd international workshop “Massive parallelism: hardware, software and applications”. World Scientific, Singapore, pp 392–407

    Google Scholar 

  13. Di Gregorio S, Rongo R, Siciliano C, Sorriso-Valvo M, Spataro W (1999) Mt Ontake landslide simulation by the cellular automata model SCIDDICA-3. Phys Chem Earth 24(2):97–100

    Article  Google Scholar 

  14. Avolio MV, Di Gregorio S, Mantovani F, Pasuto A, Rongo R, Silvano S, Spataro W (2000) Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios. J Appl Earth Obs Geoinf 2(1):41–50

    Article  Google Scholar 

  15. Crisci GM, Rongo R, Di Gregorio S, Spataro W (2004) The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna. J Volcanol Geotherm Res 132:253–267

    Article  Google Scholar 

  16. Avolio MV, Crisci GM, Di Gregorio S, Rongo R, Spataro W, D’Ambrosio D (2006) Pyroclastic flows modelling using cellular automata. Comput Geosci 32:897–911

    Article  Google Scholar 

  17. Avolio MV, Errera A, Lupiano V, Mazzanti P, Di Gregorio S (2012, to appear) A cellular automata model for snow avalanches. J Cellular Autom

  18. Avolio MV, Lupiano V, Mazzanti P, Di Gregorio S (2008) Modelling combined subaerial-subaqueous flow-like landslides by cellular automata. In: Umeo H, Chopard B, Bandini S (eds) ACRI 2008. LNCS, vol 5191, pp 329–336

    Google Scholar 

  19. Avolio MV, Di Gregorio S, Lupiano V, Mazzanti P, Spataro W (2010) Application context of the SCIDDICA model family for simulations of flow-like landslides. In: Proceedings of the 2010 international conference on scientific computing, Las Vegas (USA), pp 40–46. CSREA Press

    Google Scholar 

  20. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Investigation and mitigation. Special report 247, transportation research board, national research council. National Academy Press, Washington, pp 36–75

    Google Scholar 

  21. Hungr OO (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  22. Petitot J (1977) Centrato/a-centrato. Enciclopedia Einaudi, vol 2. Einaudi, Torino, pp 894–954. In Italian

    Google Scholar 

  23. Avolio MV, Di Gregorio S, Spataro W, Trunfio GA (2012) Theorem about the algorithm of minimization of differences for multicomponent cellular automata. In: Sirakoulis GC, Bandini S (eds) ACRI 2012. LNCS, vol 7495, pp 289–298

    Google Scholar 

  24. D’Ambrosio D, Di Gregorio S, Gabriele S, Gaudio R (2001) A cellular automata model for soil erosion by water. Phys Chem Earth, Part B, Hydrol Oceans Atmos 26(1):33–39

    Article  Google Scholar 

  25. D’Ambrosio D, Iovine G, Spataro W, Miyamoto H (2007) A macroscopic collisional model for debris-flows simulation. Environ Model Softw 22(10):1417–1436

    Article  Google Scholar 

  26. Mazzanti P, Bozzano F, Avolio MV, Lupiano V, Di Gregorio S (2009) 3D numerical modelling of submerged and coastal landslides propagation. In: Submarine mass movements and their consequences IV. Advances in natural and technological hazards research, vol 28, pp 127–139. The Netherlands

    Google Scholar 

  27. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097

    Article  Google Scholar 

  28. Avolio MV (2004) Esplicitazione della velocità per la modellizzazione e simulazione di flussi di superficie macroscopici con automi cellulari ed applicazioni alle colate di lava di tipo etneo. PhD Thesis (in Italian). Dept. of Mathematics, University of Calabria

  29. Avolio MV, Crisci GM, Di Gregorio S, Rongo R, Spataro W, Trunfio GA (2006) SCIARA γ2: an improved cellular automata model for lava flows and applications to the 2002 etnean crisis. Comput Geosci 32:897–911

    Article  Google Scholar 

  30. Marchi E, Rubatta A (1950) Meccanica dei fluidi. Principi e applicazioni. UTET, Torino, 1981(120) H Rouse. Engineering hydraulics, Wiley, Chichester

    Google Scholar 

  31. Mazzanti P, Bozzano F, Esposito C (2007) Submerged landslides morphologies in the Albano Lake (Rome, Italy). In: Lykousis V, Sakellariou D, Locat J (eds) Proc of 3rd intern. symp. Submarine mass movements and their consequences. Advances in natural and technological hazards research, vol 27. Springer, Heidelberg, pp 243–250

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was funded by the Italian Instruction, University and Research Ministry (MIUR), PON Project No. 01_01503 “Integrated Systems for Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main Lifelines”, CUP B31H11000370005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Vittoria Avolio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avolio, M.V., Di Gregorio, S., Lupiano, V. et al. SCIDDICA-SS3: a new version of cellular automata model for simulating fast moving landslides. J Supercomput 65, 682–696 (2013). https://doi.org/10.1007/s11227-013-0948-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-013-0948-1

Keywords

Navigation