Skip to main content
Log in

A decentralized protocol for mobile control access

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper we use the Diffie–Hellman key exchange protocol to introduce a decentralized key agreement protocol based on elliptic curves. We do not use any public key infrastructure, which makes it suitable for light devices with low computational and storage capabilities. Thus mobile devices can directly authorize other mobile devices to exchange keys in order to get access to a service or system, in a secure and efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cao X, Kou W, Du X (2010) A pairing-free identity-based authenticated key agreement protocol with minimal message exchanges. Inf Sci 180(15):2895–2903

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen L, Kudla C (2003) Identity based authenticated key agreement protocols from pairings. In: Proceedings 16th IEEE, Computer security foundations workshop, pp 219–233

  3. Cheng Z, Nistazakis M, Comley R, Vasiu L (2004) On the indistinguishability-based security model of key agreement protocols-simple cases. In: Proceedings of ACNS, vol 4. Citeseer

  4. ElGamal T (1985) A public key cryptosystem and a signature scheme based on discrete logarithms. Inf Theory IEEE Trans 31(4):469–472

    Article  MathSciNet  MATH  Google Scholar 

  5. Kale L, Arya A, Bhatele A, Gupta A, Jain N, Jetley P et al (2011) Charm++ for productivity and performance: a submission to the 2011 HPC Class II Challenge. 11–49

  6. Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48(177):203–209

    Article  MathSciNet  MATH  Google Scholar 

  7. Miller V (1985) Use of elliptic curves in cryptography. In: CRYPTO: Proceedings of crypto, pp 417–426

  8. NSA suite b cryptography. http://www.nsa.gov/ia/programs/suiteb_cryptography/

  9. Rivest R, Sharmir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptography. Commun ACM 21(2):120–128

    Article  MATH  Google Scholar 

  10. Shim K (2003) Efficient id-based authenticated key agreement protocol based on weil pairing. Electron Lett 39(8):653–654

    Article  Google Scholar 

  11. Smart N (2002) Identity-based authenticated key agreement protocol based on weil pairing. Electron Lett 38(13):630–632

    Article  MATH  Google Scholar 

  12. Sun H, Hsieh B (2003) Security analysis of Shim’s authenticated key agreement protocols from pairings. In: Cryptography ePrint Archive, Report 113

  13. Tsaur W-J, Chou C-H (2005) Efficient algorithms for speeding up the computations of elliptic curve cryptosystems. Appl Math Comput 168(2):1045–1064

    Article  MathSciNet  MATH  Google Scholar 

  14. Xuefei C, Weidong K, Yong Y, Rong S (2008) Identity-based authenticated key agreement protocols without bilinear pairings. IEICE Trans Fundam Electron Commun Comput Sci 91(12):3833–3836

    Google Scholar 

Download references

Acknowledgments

Supported by the Spanish Ministry of Science and Innovation Grants TEC2009-13763-C02-02, TIN2008-01117 and Junta de Andalucía FQM0211, P11-TIC7176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Alvarez Bermejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez Bermejo, J.A., Lodroman, M.A. & Lopez-Ramos, J.A. A decentralized protocol for mobile control access. J Supercomput 70, 709–720 (2014). https://doi.org/10.1007/s11227-014-1165-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1165-2

Keywords

Navigation