Skip to main content

Advertisement

Log in

Modern network traffic modeling based on binomial multiplicative cascades

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper we present a new multifractal approach for modern network traffic modeling. The proposed method is based on a novel construction scheme of conservative multiplicative cascades. We show that the proposed model can faithfully capture some main characteristics (scaling function and moment factor) of multifractal processes. For this new network traffic model, we also explicitly derive analytical expressions for the mean and variance of the corresponding network traffic process and show that its autocorrelation function exhibits long-range dependent characteristics. Finally, we evaluate the performance of our model by testing both real wired and wireless traffic traces, comparing the obtained results with those provided by other well-known traffic models reported in the literature. We found that the proposed model is simple and capable of accurately representing network traffic traces with multifractal characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Leland W, Taqqu M, Willinger W, Wilson D (1994) On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans Netw 2(1):1–15

  2. Riedi RH, Crouse MS, Ribeiro VJ, Baraniuk RG (1990) A multifractal wavelet model with application to network traffic. IEEE Trans Inf Theory. Special Issue on Multiscale Signal Analysis and Modeling, 45: 992–1018

  3. Vieira FHT, Lee LL (2009) Adaptive wavelet based multifractal model applied to the effective bandwidth estimation of network traffic flows. IET Communications. pp 906–919

  4. Krishna PM, Gadre VM, Desai UB (2003) Multifractal based network traffic modeling. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  5. Xu Z, Wang L, Wang K (2011) A new multifractal model based on multiplicative cascade. Inf Technol J 10:452–456

    Article  Google Scholar 

  6. Peltier R, Véhel JL (1995) Multifractional brownian motion: definition and preliminary results. Technical Report 2695, INRIA

  7. Vieira FHT, Bianchi GR, Lee LL (2010) A network traffic prediction approach based on multifractal modeling. J High Speed Netw 17(2):83–96

    Google Scholar 

  8. Kolmogorov AN (1941) The local structure of turbulence in a compressible liquid for very large Reynolds numbers. CR (Dokl) Acad Sci URSS (NS) 30:301–305

  9. Aloud M, Tsang E, Dupuis A, Olsen R (2011) Minimal agent-based model for the origin of trading activity in foreign exchange market. In: Computational intelligence for financial engineering and economics (CIFEr), pp 1–8

  10. Paschalis A, Molnar P, Burlando P (2012) Temporal dependence structure in weights in a multiplicative cascade model for precipitation. Water Resour Res 48:W01501

    Article  Google Scholar 

  11. Stephen DG, Anastas JR, Dixon JA (2012) Scaling in cognitive performance reflects multiplicative multifractal cascade dynamics. In: Frontiers in physiology, fractal physiology 3:102. doi: 10.3389/fphys.2012.00102

  12. Feldmann A, Gilbert AC, Willinger W (1997) Data networks as cascades: investigating the multifractal nature of internet WAN traffic. Proc. Of 35th Annual Allerton Conf. on communications, control, and computing, pp 269–280

  13. Fisher A, Calvet L, Mandelbrot BB (1997) Multifractality of Deutschmark/US dollar exchanges rates. Yale University

  14. Dang TD, Molnár S, Maricza I (2003) Queuing performance estimation for general multifractal traffic. Int J Commun Syst 16(2):117–136

    Article  MATH  Google Scholar 

  15. Mandelbrot BB (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62:331–358

  16. Guivarc’h Y (1987) Remarques sur les solutions d’ une equation fonctionnelle non linéaire de Benoît Mandelbrot. Comptes Rendus (Paris) 305I(139):1987

    MathSciNet  Google Scholar 

  17. Stolojescu-Crisan C, Isar A, Moga S, Lenca P (2013) WiMax traffic analysis and base stations classifications in terms of LRD. Expert Systems 30(4):285–293. doi:10.1111/exsy.12026

    Article  Google Scholar 

  18. Jizba P, Korbel J (2013) Modeling financial time series: multifractal cascades and Rényi entropy. In: Interdisciplinary symposium on complex systems emergence, complexity and computation. ISCS 2013, vol 8, pp 227–236

  19. Seuret S, Lévy-Véhel J (2000) The local holder function of a continuous function. Appl Comput Harmon Anal 13(3):263–276

    Article  Google Scholar 

  20. Beran J (2010) Long-range dependence Wiley interdisciplinary reviews. Comput Stat 2(1):26–35

    Article  MathSciNet  Google Scholar 

  21. http://ita.ee.lbl.gov/html/traces.html. Last accessed Mar 2014

  22. Jardosh A, Krishna NR, Kevin CA, Belding E (2014) CRAWDAD Data Set UCSB/IETF-2005 (v. 2005–10-19). out. 2005. http://crawdad.cs.dartmouth.edu/ucsb/ietf2005. Last accessed Mar 2014

  23. Falconer K (2003) Fractal geometry: mathematical foundations and applications. Second Edition Wiley; 2 edition

  24. Véhel JL (2013) Large deviation multifractal analysis of a class of additive processes with correlated non-stationary increments. IEEE/ACM Trans Netw 21(4):1309–1321

    Article  Google Scholar 

  25. Crouse MS, Baraniuk RG, Ribeiro VJ, Riedi RH (2000) Multiscale queueing analysis of long-range dependent traffic. Proc IEEE INFOCOM 2:1026–1035

    Google Scholar 

  26. http://www.cubinlab.ee.unimelb.edu.au/darryl/ms_code.html. Last accessed Mar 2014

  27. Pavlov AN, Anishchenko VS (2007) Multifractal analysis of complex signals. Phys Uspekhi 50:819–834

    Article  Google Scholar 

  28. Zhang ZL, Ribeiro VJ, Moon S, Diot C (2003) Small-time scaling behaviors of internet backbone traffic: an empirical study”, INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies 3:1826–1836

  29. Karagiannis T, Faloutsos M (2014) SELFIS: A tool for self-similarity and long-range dependence analysis. 1st Workshop on Fractals and Self-Similarity in Data Mining: Issues and Approaches (in KDD) Edmonton, Canada, 2002. SELFIS—Downloaded from http://alumni.cs.ucr.edu/~tkarag/Selfis/Selfis.html. Last accessed Mar 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeferson Wilian de Godoy Stênico.

Appendix

Appendix

1.1 Appendix A: Proof of Lemma 1

Let \(X( {{\Delta }t_0 })=2^n.{Y}.{R}( {b_1 }){R}( {b_1 b_2 })\ldots {R}(b_1 \ldots b_k )\) for \(N\gg 1\). Thus, the mean of process \({X}(\Delta {t}_0 )\) is given by:

$$\begin{aligned} {E}[{X}( {{\Delta t}_0 })]={E}[2^{n}.{Y}.{R}( {{b}_1 }){R}( {{b}_1 {b}_2 })\ldots {R}({b}_1 \ldots {b}_{k} )]. \end{aligned}$$
(39)

Using the fact that \({E}[ {X( {{\Delta }t_{N} })} ]=2^{-N}\), we have:

$$\begin{aligned} {E}[ {X( {{\Delta }t_0 })} ]={E}[{Y}]. \end{aligned}$$
(40)

Assuming \(Y\) have lognormal distribution:

$$\begin{aligned} {E}[ {{X}( {{\Delta t}_0 })} ]={E}[ {Y} ]={e}^{{m}+{v}^2/2}. \end{aligned}$$
(41)

1.2 Appendix B: Proof of Lemma 2

Using variance definition

$$\begin{aligned} \hbox {Var}[ {{X}( {{\Delta t}_0 })} ]=E[ {{X}( {{\Delta t}_0 })^2} ]-E[{X}( {{\Delta t}_0 })]^2. \end{aligned}$$
(42)

Then

$$\begin{aligned} \hbox {Var}[ {{X}( {{\Delta t}_0 })} ]={E}[ {{Y}^2} ]2^{2{N}}{E}[ {{R}^2} ]^{N}-{E}[{X}( {{\Delta t}_0 })]^2 \end{aligned}$$
(43)

or

$$\begin{aligned} \hbox {Var}[ {{X}( {{\Delta t}_0 })} ]={E}[ {{Y}^2} ]2^{2{N}}{E}[ {{R}^2} ]^{N}-{E}[{Y}]^2. \end{aligned}$$
(44)

Therefore

$$\begin{aligned} \hbox {Var}[ {{X}( {{\Delta t}_0 })} ]=e^{2m+2v^2}.\,2^{2N}.\,\left( {\frac{( {\alpha +\beta })(\alpha +\beta +1)}{(\alpha +1)\alpha }}\right) ^N-e^{2m+v^2} \end{aligned}$$
(45)

1.3 Appendix C: Proof of Lemma 4

Let \({m}=2^{k}\) and \({x}_{( {{N}-{k}})} =\sum _{( {{k}-1}){m}+1}^{{km}} {X}( {k})\), the aggregate process \({X}^{m}\) at stage \(( {{N}-{k}})\) can be represented as

$$\begin{aligned} {X}^{m}=2^{-{k}}{x}_{( {{N}-{k}})} \end{aligned}$$
(46)

The variance of aggregate process \({X}^{m}\) can be written as

$$\begin{aligned} \hbox {Var}[{X}^{m}]={E}[ {( {2^{-{k}}{x}_{({N}-{k})} })^2} ]-{E}^2[ {( {2^{-{k}}{x}_{({N}-{k})} })} ] \end{aligned}$$
(47)

Using the fact that the process \({X}\) can be viewed as the product of a lognormal random variable \({Y}\) and a multiplicative cascade \({\mu }\), the following relation is valid:

$$\begin{aligned} {x}_{({N}-{k})} =\mathop \sum \limits _{( {{k}-1}){m}+1}^{{km}} {{Y}\mu }(\Delta {t}_{k} ). \end{aligned}$$
(48)

Using Eq. (46) and moments of the aggregate process of the multiplicative cascade given by:

$$\begin{aligned} \frac{1}{{m}}\mathop \sum \limits _{{i}=1}^{m} {X}( {i})^{q}=\frac{1}{{m}}\mathop \sum \limits _{{i}=1}^{m} ({Y}_{i} {\mu }( {\Delta {t}_{i} }))^{q} \end{aligned}$$
(49)

we have

$$\begin{aligned} \hbox {Var}[{X}^{m}]&= {E}\left[ \left( {2^{-{k}}\frac{1}{2^{k}}\mathop \sum \limits _{( {{k}-1}){n}+1}^{{kn}} {{Y} \mu }(\Delta {t}_{i})^2}\right) \right] \nonumber \\&\quad -{E}^2\left[ {\left( {2^{-{k}}\frac{1}{2^{k}}\mathop \sum \limits _{( {{k}-1}){n}+1}^{{kn}} {{Y}\mu }(\Delta {t}_{i} )}\right) } \right] \end{aligned}$$
(50)
$$\begin{aligned} \hbox {Var}[{X}^{m}]&= {E}\left[ {{Y}^2} \right] 2^{2{N}}{E}\left[ {{R}^2} \right] ^{{N}-{k}}-{E}[{Y}]^2\left( {\frac{1}{2}}\right) ^{2({N}-{k})}\end{aligned}$$
(51)
$$\begin{aligned} \hbox {Var}[{X}^{m}]&= {e}^{2{m}+2{v}^2}\left( {\frac{{\alpha }({\alpha }+1)}{( {{\alpha }+{\beta }})({\alpha }+{\beta }+1)}}\right) ^{{N}-{k}}-{e}^{2{m}+{v}^2}2^{2{k}-2{N}}. \end{aligned}$$
(52)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Godoy Stênico, J.W., Ling, L.L. Modern network traffic modeling based on binomial multiplicative cascades. J Supercomput 71, 1712–1735 (2015). https://doi.org/10.1007/s11227-014-1255-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1255-1

Keywords