Skip to main content
Log in

All-to-all broadcasting in torus Network on Chip

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper proposes and evaluates the performance of an all-to-all broadcasting algorithm for a 2D torus Network on Chip (NoC). The proposed algorithm uses special spanning trees called NEWS spanning trees. These trees are link conflict free which implies that the communication steps of the all-to-all algorithm are contention free. The proposed all-to-all broadcasting algorithm is optimal in terms of transmission time and does not need any additional buffer memory like in the all-to-all algorithm for the 2D torus (IEEE Trans Comput 50:1029–1032, 2001). Reducing the amount of buffer space is a very important issue in NoC architectures. Our algorithm is therefore a more efficient solution for all-to-all broadcasting in 2D torus NoC multi-core systems compared to previously proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ackland B et al (2000) A single chip, 1.6-Billion, 16-b MAC/s Multiprocessor DSP. IEEE J Solid State Circuits:412–424

  2. Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Comput 35:70–78

    Article  Google Scholar 

  3. Benini L, De Micheli G (2000) System-level power optimization: techniques and tools. ACM Trans Design Autom Electr Syst:115–192

  4. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In: Proc. Design Automatin Conf. (DAC). pp 684–689

  5. Marculescu R, Ogras UY, Peh L, Jerger NE, Hoskote Y (2009) Outstanding research problems in NoC design: system, microarchitecture, and circuit perspectives. IEEE Trans Comput Aided Design Integr Circuits Syst 28(1):3–21

    Article  Google Scholar 

  6. Bertozzi D et al (2005) NoC synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE Trans Parallel Distrib Syst 16(2):113–129

    Article  Google Scholar 

  7. Benini L, De Micheli G (2006) Networks on chips: technology and tools. Morgan Kaufmann

  8. Guerrier P, Greiner A (2000) A generic architecture for on-chip packet-switched interconnections. In: Proc. Design and Test in Europe (DATE). pp 250–256

  9. Kumar S et al (2002) A network on chip architecture and design methodology. Proc Intl Symposium VLSI (ISVLSI):117–124

  10. Bjerregaard T, Mahadevan S (2006) A survey of research and practices of network-on-chip. ACM Comput Surv 38(1) (article 1)

  11. Ogras UY, Hu J, Marculescu R (2005) Key re-search problems in NoC design: a holistic perspective. In: CODES. pp 69–75

  12. Dally WJ (1990) Performance analysis of k-ary n-cube interconnection networks. IEEE Trans Comput 39(6):775–785

    Article  MathSciNet  Google Scholar 

  13. Dally WJ, Seitz CL (1986) The torus routing chip. J Distrib Comput 1(4):187–196

    Article  Google Scholar 

  14. Zhang Z, Guo Z, Yang Y (2012) Efficient all-to-all broadcast in Gaussian On-Chip-Networks. IEEE Trans Comput 62(10):1959–1971

    Article  MathSciNet  Google Scholar 

  15. Saad Y, Schultz MH (1989) Data communication in parallel architectures. Parallel Comput 11:131–150

    Article  MATH  MathSciNet  Google Scholar 

  16. Johnsson SL, Ho CT (1989) Optimum broadcasting and personalized communication in hypercubes. IEEE Trans Comput 38(9):1249–1268

    Article  MathSciNet  Google Scholar 

  17. Bruck J, Ho CT, Kipnis S, Weathersby D (1994) Efficient Algorithms for All-to-All Communications in Multi-Port Message-Passing Systems. In: ACM Symposium on Parallel Algorithms and Architectures. pp 298–309

  18. Calvin C, Perennes S, Trystram D (1995) All-to-all broadcast in torus with wormhole-like routing. In: Proc. of 7th IEEE Symposium on Parallel and Distributed Processing. pp 130–137

  19. Yang Y, Wang J (1999) Efficient all-to-all broadcast in all-port mesh and torus networks. In: Proceedings of the Fifth International Symposium on High-Performance Computer Architecture. Orlando, pp 290–299

  20. Yang Y, Wang J (2001) Pipelined all-to-all broadcast in all-port meshes and tori. IEEE Trans Comput 50(10):1029–1032

    Google Scholar 

  21. Yang Y, Wang J (2002) Near-optimal all-to-all broadcast in multidimensional all-port meshes and tori. IEEE Trans Parallel Distrib Syst 13(2):128–141

    Article  Google Scholar 

  22. Huang H (2010) Efficient all-to-all broadcast algorithm in torus networks. IEEE Int Conf Intell Comput Intell Syst:911–916

  23. Touzene A (1991) Brigitte plateau, optimal multinode broadcast on a mesh connected graph with reduced bufferization. Distrib Memory Comput Lect Notes Comput Sci 487(1991):143–152

    Article  Google Scholar 

  24. Hassoun S, Alpert CJ, Thiagarajan M (2002) Optimal buffered routing path construction for single and multiple clock domain systems. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided Design. pp 247–253

  25. Ogras UY, Marculescu R (2006) It’s a small world after all: NoC performance optimization via long-range link insertion. IEEE Trans Very Large Scale Integr Syst 14(7):693–706

    Article  Google Scholar 

  26. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor: theoretical properties and algorithms, parallel computing (journal). Elsevier 21(11):1783–1806

    Google Scholar 

  27. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th Annual International High Performance Computing Conference. The 1993 High Performance Computing: New Horizons Supercomputing Symposium. Calgary, Alberta, Canada, pp 349–357

  28. Wani MA, Arabnia HR (2003) Parallel edge-region-based degmentation algorithm targeted at reconfigurable multi-ring network. J Supercomput 25(1):43–63

    Article  MATH  Google Scholar 

  29. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–193

    Article  Google Scholar 

  30. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitized images. Int J Eurographics Assoc 8(1):3–12

    Google Scholar 

  31. Bhandarkar SM, Arabnia HR (1995) The hough transform on a reconfigurable multi-ring network. J Parallel Distrib Comput 24(1):107–114

    Article  Google Scholar 

  32. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30(5):425–433

    Article  Google Scholar 

  33. Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10(3):243–270

    Article  MATH  Google Scholar 

  34. Arabnia HR, Oliver MA (1987) Arbitrary rotation of raster images with SIMD machine architectures. Int J Eurographics Assoc 6(1):3–12

    Google Scholar 

  35. Bhandarkar SM, Arabnia HR, Smith JW (1995) A reconfigurable architecture for image processing and computer vision. Int J Pattern Recogn Artif Intell 9(2):201–229

    Article  Google Scholar 

  36. Arabnia HR (1996) Distributed Stereocorrelation Algorithm. Int J Comput Commun 707–712

  37. Touzene A (2014) On all-to-all broadcast in dense gaussian network on-chip. IEEE Trans Parallel Distrib Syst 99:1

    Article  Google Scholar 

  38. Touzene A (2014) All-to-all broadcast in hexagonal torus networks on-chip. IEEE Trans Parallel Distrib Syst 99:1 (no. preprints)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderezak Touzene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touzene, A., Day, K. All-to-all broadcasting in torus Network on Chip. J Supercomput 71, 2585–2596 (2015). https://doi.org/10.1007/s11227-015-1406-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-015-1406-z

Keywords

Navigation