Skip to main content
Log in

2-Disjoint-path-coverable panconnectedness of crossed cubes

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The crossed cube is a popular network topology because it possesses many attractive topological properties and its diameter is about half that of the hypercube. Typically, a network topology is modeled as a graph whose vertices and edges represent processors and communication links, respectively. We define a graph \(G\) to be \(2\)-disjoint-path-coverably \(r\)-panconnected for a positive integer \(r\) if for any four distinct vertices \(u,\, v,\, x\), and \(y\) of \(G\), there exist two vertex-disjoint paths \(P_1\) and \(P_2,\) such that (i) \(P_1\) joins \(u\) and \(v\) with length \(l\) for any integer \(l\) satisfying \(r \le l \le |V(G)| - r - 2\), and (ii) \(P_2\) joins \(x\) and \(y\) with length \(|V(G)| - l - 2\), where \(|V(G)|\) is the total number of vertices in \(G\). This property can be considered as an extension of both panconnectedness and connectivity. In this paper, we prove that the \(n\)-dimensional crossed cube is \(2\)-disjoint-path-coverably \(n\)-panconnected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abraham S, Padmanabhan K (1991) The twisted cube topology for multiprocessors: a study in network asymmetry. J Parallel Distrib Comput 13:104–110

    Article  Google Scholar 

  2. Alavi Y, Williamson JE (1975) Panconnected graphs. Stud Sci Math Hung 10:19–22

    MathSciNet  Google Scholar 

  3. Arabnia HR, Oliver MA (1987) Arbitrary rotation of raster images with SIMD machine architectures. Int J Eurogr Assoc (computer graphics forum) 6:3–11

    Article  Google Scholar 

  4. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30:425–432

    Article  Google Scholar 

  5. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Int J Eurogr Assoc (computer graphics forum) 8:3–11

    Article  Google Scholar 

  6. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10:188–192

    Article  Google Scholar 

  7. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th annual international high performance computing conference. The 1993 high performance computing: new horizons supercomputing symposium, Calgary, pp 349–357

  8. Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10:243–269

    Article  MATH  Google Scholar 

  9. Arabnia HR (1996) Distributed stereo-correlation algorithm. Comput Commun 19:707–711

    Article  Google Scholar 

  10. Arif Wani M, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multiring network. J Supercomput 25:43–62

    Article  MATH  Google Scholar 

  11. Bhandarkar SM, Arabnia HR (1995) The Hough transform on a reconfigurable multi-ring network. J Parallel Distrib Comput 24:107–114

    Article  Google Scholar 

  12. Bhandarkar SM, Arabnia HR, Smith JW (1995) A reconfigurable architecture for image processing and computer vision. Int J Pattern Recognit Artif Intell 9:201–229

    Article  Google Scholar 

  13. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor: theoretical properties and algorithms. Parallel Comput 21:1783–1805

    Article  Google Scholar 

  14. Bondy JA, Murty USR (2008) Graph theory. Springer, London

    Book  MATH  Google Scholar 

  15. Chang C-P, Sung T-Y, Hsu L-H (2000) Edge congestion and topological properties of crossed cubes. IEEE Trans Parallel Distrib Syst 11:64–80

    Article  Google Scholar 

  16. Chen H-C, Kung T-L (2014) A data verification report on 2-disjoint-path-coverable panconnectedness of crossed cubes. Available at http://140.128.10.61/2DPC/CQn/index.htm

  17. Chen H-C, Kung T-L, Hsu L-H (2011) Embedding a Hamiltonian cycle in the crossed cube with two required vertices in the fixed positions. Appl Math Comput 217:10058–10065

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen H-C, Kung T-L, Mao H-W (2012) Fault-tolerant Hamiltonian connectedness of the crossed cube with path faults. In: Proceedings of the international conference on computer science and applied mathematics, pp 297–301

  19. Choudum SA, Sunitha V (2002) Augmented cubes. Networks 40:71–84

    Article  MATH  MathSciNet  Google Scholar 

  20. Cohen J, Fraigniaud P, Konig J-C, Raspaud A (1998) Optimized broadcasting and multicasting protocols in cut-through routed networks. IEEE Trans Parallel Distrib Syst 9:788–802

    Article  Google Scholar 

  21. Cohen J, Fraigniaud P (2000) Broadcasting and multicasting in trees. In: Technical report LRI-1265, Labratorie de Recherche en Informatique, University Paris-Sud, Orsay

  22. Datta A, Thomas H (1999) The cube data model: a conceptual model and algebra for on-line analytical processing in data warehouses. Decis Support Syst 27:289–301

    Article  Google Scholar 

  23. Efe K (1991) A variation on the hypercube with lower diameter. IEEE Trans Comput 40:1312–1316

    Article  Google Scholar 

  24. Efe K (1992) The crossed cube architecture for parallel computing. IEEE Trans Parallel Distribut Syst 3:513–524

    Article  Google Scholar 

  25. Fan J, Jia X, Lin X (2006) Complete path embeddings in crossed cubes. Inf Sci 176:3332–3346

    Article  MATH  MathSciNet  Google Scholar 

  26. Fan J, Lin X, Jia X (2005) Optimal path embeddings in crossed cubes. IEEE Trans Parallel Distrib Syst 16:1190–1200

    Article  Google Scholar 

  27. Fan J, Lin X, Jia X (2005) Node-pancyclicity and edge-pancyclicity of crossed cubes. Inf Process Lett 93:133–138

    Article  MATH  MathSciNet  Google Scholar 

  28. Ghodsi M, Hajiaghayi MT, Mahdian M, Mirrokni VS (2002) Length-constrained path-matchings in graphs. Networks 39:210–215

    Article  MATH  MathSciNet  Google Scholar 

  29. Hsu L-H, Lin C-K (2008) Graph theory and interconnection networks. CRC Press, Boca Raton, London, New York

    Google Scholar 

  30. Huang W-T, Chuang Y-C, Tan JJM, Hsu L-H (2002) On the fault-tolerant Hamiltonicity of faulty crossed cubes. IEICE Trans Fundam E85–A:1359–1370

    Google Scholar 

  31. Kulasinghe P (1997) Connectivity of the crossed cube. Inf Process Lett 61:221–226

    Article  MathSciNet  Google Scholar 

  32. Kulasinghe P, Bettayeb S (1995) Embedding binary trees into crossed cubes. IEEE Trans Comput 44:923–929

    Article  MATH  Google Scholar 

  33. Lai P-L, Hsu H-C (2008) The two-equal-disjoint path cover problem of matching composition network. Inform Process Lett 107:18–23

    Article  MATH  MathSciNet  Google Scholar 

  34. Leighton FT (1992) Introduction to parallel algorithms and architectures: arrays \(\cdot \) trees \(\cdot \) hypercubes. Morgan Kaufmann, San Mateo

    Google Scholar 

  35. Moran S, Newman I, Wolfstahl Y (1990) Approximation algorithms for covering a graph by vertex-disjoint paths of maximum total weight. Networks 20:55–64

    Article  MATH  MathSciNet  Google Scholar 

  36. Nedjar S, Cicchetti R, Lakhal L (2011) Extracting semantics in OLAP database using emerging cubes. Inf Sci 181:2036–2059

    Article  Google Scholar 

  37. Park J-H, Kim H-C, Lim H-S (2006) Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements. IEEE Trans Parallel Distrib Syst 17:227–240

    Article  Google Scholar 

  38. Park J-H, Kim H-C, Lim H-S (2009) Many-to-many disjoint path covers in the presence of faulty elements. IEEE Trans Comput 58:528–540

    Article  MathSciNet  Google Scholar 

  39. Park NH, Joo KH (2014) Query processing on OLAP system with cloud computing environment. Int J Multimed Ubiquitous Eng 9:169–174

    Article  Google Scholar 

  40. Saad Y, Schultz MH (1988) Topological properties of hypercubes. IEEE Trans Comput 37:867–872

    Article  Google Scholar 

  41. Wu S, Manber U (1992) Path-matching problems. Algorithmica 8:89–101

    Article  MATH  MathSciNet  Google Scholar 

  42. Xu J-M (2001) Topological structure and analysis of interconnection networks. Kluwer Academic, Dordrecht

    Book  MATH  Google Scholar 

  43. Yang X, Evans DJ, Megson GM (2005) The locally twisted cubes. Int J Comput Math 82:401–413

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Council of the Republic of China under Contracts NSC 99-2221-E-167-025 and NSC 98-2218-E-468-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon-Chan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HC., Kung, TL. & Hsu, LY. 2-Disjoint-path-coverable panconnectedness of crossed cubes. J Supercomput 71, 2767–2782 (2015). https://doi.org/10.1007/s11227-015-1417-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-015-1417-9

Keywords

Navigation