Abstract
In this paper, a dual-mode routing approach is proposed for routing messages in 2D photonic network on chip (NoC) platforms. The dual-mode routing approach is based on selecting exclusively one of two routing techniques for each stage of a parallel application. Depending on the data exchange requirements of a specific stage of an application, either a conventional per-message-based routing or a collective routing technique is selected, and the network on chip architecture is organized to support that selection. The network on chip architecture that we use is a two-dimensional torus topology built from novel \(8\times 8\) non-blocking all-port photonic switches. The design of \(8\times 8\) non-blocking all-port photonic switch empowers each node with simultaneous connections to four other nodes in the network. The rich connectivity provided by the switches helps the collective routing technique to efficiently support collective communication operations by allowing deadlock-free and contention-free dense data exchange among the nodes. Similar dense data exchanges are also required for some commonly known parallel algorithms such as parallel matrix multiplication, linear equation solvers and n-body simulation algorithms, just to name a few. A lightweight electronic network is employed for establishing and tearing down the photonic communication paths (light paths) in per-message-based routing technique. The lightweight electronic network is also used for coordinating the whole network in the collective routing technique.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig15_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig16_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig17_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-016-1620-3/MediaObjects/11227_2016_1620_Fig18_HTML.gif)
Similar content being viewed by others
References
Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomp 10(3):243–270
Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comp J 30(5):425–433
Arif Wani M, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multi-ring network. J Supercomp 25(1):43–63
Arkın E, Tekinerdoğan B, İmre KM (2013) Model-driven approach for supporting the mapping of parallel algorithms to parallel computing platforms. In: Proceedings of 16th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS 2013. In Book: Lecture Notes in Computer Science 8107, pp 757–773
Baransel C, İmre KM (2012) A parallel implementation of Strassen’s matrix multiplication algorithm for Wormhole-Routed all-port 2D torus networks. J Supercomp 62(1):486–509
Beausoleil RG (2011) Large-scale integrated photonics for high-performance interconnects. ACM J Emerg Technol Comp Syst 7(2):6.1–6.54
Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor: theoretical properties and algorithms. Parallel Comp 21(11):1783–1806
Bhandarkar SM, Arabnia HR (1995) The Hough transform on a reconfigurable multi-ring network. J Parallel Distrib Comp 24(1):107–114
Biberman A, Lee BG, Sherwood-Droz N, Lipson M, Bergman K (2010) Broadband operation of nanophotonic router for silicon photonic networks-on-chip. IEEE Photonics Technol Lett 22(12):926–928
Biberman A, Lira HLR, Padmaraju K, Ophir N, Chan J, Lipson M, Bergman K (2011) Broadband silicon photonic electrooptic switch for photonic interconnection networks. IEEE Photonics Technol Lett 23(8):504–506
Biberman A, Preston K, Hendry G, Sherwood-Droz N, Chan J, Levy JS, Lipson M, Bergman K (2011) Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors. ACM J Emerg Technol Comp Syst 7(2):7.1–7.25
Chan J, Hendry G, Biberman A, Bergman K (2010) Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis. J Lightwave Technol 28(9):1305–1315
Chan J, Biberman A, Lee BG, Bergman K (2008) Insertion loss analysis in a photonic interconnection network for on-chip and off-chip communications. In: Proceedings of 21st Annual Meeting of the LEOS, pp 300–301
Cianchetti MJ, Albonesi DH (2011) A low-latency, high-throughput on-chip optical router architecture for future chip multiprocessors. ACM J Emerg Technol Comp Syst 7(2):9.1–9.20
Debaes C, Artundo I, Heirman W, Loperena M, Van Campenhout J, Thienpont H (2009) Architectural study of reconfigurable photonic Networks-on-Chip for multi-core processors. In: Proceedings of Annual Meeting of the LEOS. pp 266–267
Gu H, Gao K, Wang Z, Yang Y, Yu X (2014) New path-setup method for optical network-on-chip. ETRI J 36(3):367–373
Hendry G, Chan J, Kamil S, Oliker L, Shalf J, Carloni LP, Bergman K (2010) Silicon nanophotonic network-on-chip using TDM arbitration. In: Proceedings of IEEE 18th Annual Symposium on High Performance Interconnects pp. 88–95
Hendry G, Robinson E, Gleyzer V, Chan J, Carloni LP, Bliss N, Bergman K (2011) Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors. J Parallel Distrib Comp 71(5):641–650
İmre KM, Baransel C, Artuner H (2011) Efficient and scalable routing algorithms for collective communication operations on 2D all-port torus networks. Int J Parallel Program 39(6):746–782
İmre K, Sevim N (2013) The high level architecture (HLA) on photonic torus: hardware and software co-design. In: Proceedings of the 2013 8th EUROSIM Congress on Modelling and Simulation (EUROSIM ’13). pp 550–554
Lee BG, Biberman A, Chan J, Bergman K (2010) High-performance modulators and switches for silicon photonic networks-on-chip. Selected Topics IEEE J Quantum Electronics 16(1):6–22
Li Z, Mohamed M, Chen X, Zhou H, Mickelson A, Shang L, Vachharajani M (2011) Iris: a hybrid nanophotonic network design for high-performance and low-power on-chip communication. ACM J Emerg Technol Comp Syst 7(2):8.1–8.22
Li Q, Nikolova D, Calhoun DM, Liu Y, Ding R, Baehr-Jones T, Hochberg M, Bergman K (2015) Single microring-based 2 \(\times \) 2 silicon photonic crossbar switches. IEEE Photonics Technol Lett 27(18):1981–1984
Koohi S, Hessabi S (2011) Hierarchical opto-electrical on-chip network for future multiprocessor architectures. J Syst Architect Spec Issue on-chip parallel Netw Based Syst 57(1):4–23
Peters JG, Syska M (1996) Circuit-switched broadcasting in torus networks. IEEE Trans Parall Distrib Syst 7(3):246–255
Petracca M, Lee BG, Bergman K, Carloni LP (2009) Photonic NoCs: system-level design exploration. IEEE Micro 29(4):74–85
Shacham A, Bergman K, Carloni LP (2008) Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comp 57(9):1246–1260
Shang L, Xu Q (2011) Introduction to nanophotonic communication technology integration. ACM J Emerg Technol Comp Syst 7(2):5.1–5.2
Sherwood-Droz N, Wang H, Chen L, Lee BG, Biberman A, Bergman K, Lipson M (2008) Optical 4\(\times \)4 hitless silicon router for optical networks-on-chip (NoC). Optics Express 16:15915–15922
Stern B, X. Zhu X, Chen C, Tzuang L, Cardenas J, Bergman K, Lipson M (2015) Integrated switch for mode-division multiplexing (MDM) and wavelength-division multiplexing (WDM). In: Proceedings of Conference on Lasers and Electro-Optics 2015 (CLEO 2015) STh1F.2
Tsai Y, McKinley PK (1994) Broadcast in all-port wormhole-routed 3D mesh networks using extended dominating sets. In: Proceedings of the 1994 International Conference on Parallel and Distributed Systems, IEEE Computer Society, Washington. pp 120–127
Wang H, Petracca M, Biberman A, Lee BG, Carloni LP, Bergman K (2008) Nanophotonic optical interconnection network architecture for on-chip and off-chip communications. In: Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference. pp 1–3
Wu X, Ye Y, Zhang W, Liu W, Nikdast M, Wang X, Xu J (2010) UNION: a unified inter/intra-chip optical network for chip multiprocessors. In: Proceedings of 2010 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). pp 35–40
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
İmre, K.M. Dual-mode routing approach for photonic network on chip platforms. J Supercomput 72, 904–925 (2016). https://doi.org/10.1007/s11227-016-1620-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-016-1620-3