Skip to main content
Log in

Design procedures and NML cost analysis of reversible barrel shifters optimizing garbage and ancilla lines

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2016

Abstract

Reversible computing generates a unique output from each input and vice versa. In addition, conservative reversible logic is useful to design ultra-low-power nanocomputing circuits, circuits for quantum computing, and nanocircuits that are testable in nature. Reversible computing circuits require ancilla inputs and garbage outputs to maintain reversibility. An ancilla input is the constant input in a reversible circuit. A garbage output is an output which exists in the circuit just to maintain one-to-one mapping but is not a primary nor a useful output. An efficient reversible circuit will have a minimal number of garbage and ancilla bits. Furthermore, the barrel shifter is one of the main computing systems having applications in high-speed digital signal processing, floating-point arithmetic, field programmable gate arrays, and central processing units. A barrel shifter can shift and rotate multiple bits in a single clock cycle. In this work, we proposed five designs of barrel shifters based on reversible computing that are optimized in terms of the number of garbage outputs and the number of ancilla inputs. To achieve this goal, a new super conservative reversible logic gate (SCRL gate) has been proposed. The SCRL gate has 1 control input depending on the value of which it can swap any two \(n-1\) data inputs. The five proposed designs consist of reversible right rotator, reversible logical right shifter, reversible arithmetic right shifter, reversible universal right shifter, and reversible universal bidirectional shifter. The proposed designs of reversible barrel shifters are compared with the existing works in the literature and have shown improvements ranging from 8.57 to 91.62 % in terms of the number of ancilla inputs and from 17.72 to 91.62 % in terms of the number of garbage outputs. A cost analysis was made for their potential implementation in nanomagnetic logic (NML) computing. It is illustrated that the SCRL gate-based designs of reversible barrel shifters have less NML cost (cost in terms of number of inverters and majority voters) compared to the Fredkin gate-based designs of reversible barrel shifters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alam M, Karim M (1992) Programmable optical perfect shuffle interconnection network using fredkin gates. Microw Opt Technol Lett 5(7):330–333

    Article  Google Scholar 

  2. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17(6):525–532

    Article  MathSciNet  MATH  Google Scholar 

  3. Biswas AK, Hasan MM, Chowdhury AR, Babu HMH (2008) Efficient approaches for designing reversible binary coded decimal adders. Microelectron J 39(12):1693–1703

    Article  Google Scholar 

  4. Brigham EO, Brigham E (1988) The fast Fourier transform and its applications, vol 1. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  5. DeBenedictis EP (2005) Reversible logic for supercomputing. In: Proceedings of the 2nd conference on computing frontiers. ACM, New York, pp 391–402

  6. Desoete B, De Vos A (2002) A reversible carry-look-ahead adder using control gates. Integr VLSI J 33(1):89–104

    Article  MATH  Google Scholar 

  7. Donald J, Jha NK (2008) Reversible logic synthesis with fredkin and peres gates. ACM J Emerg Technol Comput Syst 4(1):2

    Article  Google Scholar 

  8. Golubitsky O, Falconer SM, Maslov D (2010) Synthesis of the optimal 4-bit reversible circuits. In: Proceedings of the 47th design automation conference. ACM, New York, pp 653–656

  9. Golubitsky O, Maslov D (2012) A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans Computers 61(9):1341–1353

    Article  MathSciNet  Google Scholar 

  10. Gupta P, Agrawal A, Jha NK (2006) An algorithm for synthesis of reversible logic circuits. IEEE Trans Computer-Aided Design Integr Circuits Syst 25(11):2317–2330

    Article  Google Scholar 

  11. Haghparast M, Jassbi SJ, Navi K, Hashemipour O (2008) Design of a novel reversible multiplier circuit using HNG gate in nanotechnology. World Appl Sci J (Citeseer)

  12. Hosseininia N, Boroumand S, Haghparast M (2015) Novel nanometric reversible low power bidirectional universal logarithmic barrel shifter with overflow and zero flags. J Circuits Syst Computers 24:1550049

    Article  Google Scholar 

  13. Kotiyal S (2012) Design methodologies for reversible logic based barrel shifters. M.S.E.E. Thesis. University of South Florida

  14. Landauer R (1961) Irreversibility and heat generation in the computational process. IBM J Res Dev 5:183–191

    Article  MathSciNet  MATH  Google Scholar 

  15. Maslov D, Dueck GW (2004) Reversible cascades with minimal garbage. IEEE Trans Computer-Aided Design Integr Circuits Syst 23(11):1497–1509

    Article  Google Scholar 

  16. Maslov D, Dueck GW, Miller DM (2007) Techniques for the synthesis of reversible toffoli networks. ACM Trans Design Autom Electron Syst 12(4):42

    Article  Google Scholar 

  17. Maslov D, Saeedi M (2011) Reversible circuit optimization via leaving the boolean domain. IEEE Trans Computer-Aided Design Integr Circuits Syst 30(6):806–816

    Article  Google Scholar 

  18. Mitra SK, Chowdhury AR (2015) Optimized logarithmic barrel shifter in reversible logic synthesis. In: 2015 28th international conference on VLSI design (VLSID). IEEE, pp 441–446

  19. Nachtigal M, Thapliyal H, Ranganathan N (2011) Design of a reversible floating-point adder architecture. In: 2011 11th IEEE conference on nanotechnology (IEEE-NANO). IEEE, pp 451–456

  20. Pillmeier MR, Schulte MJ, Walters III EG (2002) Design alternatives for barrel shifters. In: International symposium on optical science and technology, pp 436–447. International Society for Optics and Photonics

  21. Porod W, Bernstein GH, Csaba G, Hu SX, Nahas J, Niemier MT, Orlov A (2014) Nanomagnet logic (nml). In: Field-coupled nanocomputing. Springer, New York, pp 21–32

  22. Rice JE (2008) An introduction to reversible latches. Computer J 51(6):700–709

    Article  Google Scholar 

  23. Shamsujjoha M, Babu HMH, Jamal L, Chowdhury AR (2013) Design of a fault tolerant reversible compact unidirectional barrel shifter. In: 2013 26th International conference on VLSI design and 2013 12th international conference on embedded systems (VLSID). IEEE, pp 103–108

  24. Takahashi Y (2009) Quantum arithmetic circuits: a survey. IEICE Trans Fundam Electron Commun Computer Sci 92(5):1276–1283

    Article  Google Scholar 

  25. Takahashi Y, Kunihiro N (2005) A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput 5(6):440–448

    MathSciNet  MATH  Google Scholar 

  26. Takahashi Y, Tani S, Kunihiro N (2009) Quantum addition circuits and unbounded fan-out. arXiv:0910.2530

  27. Thapliyal H, Arabnia H, Vinod AP (2006) Combined integer and floating point multiplication architecture (cifm) for fpgas and its reversible logic implementation. In: 49th IEEE international midwest symposium on circuits and systems, 2006. MWSCAS’06, vol 2, pp 438–442. IEEE

  28. Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (rpla) using fredkin & feynman gates for industrial electronics and applications. cs/0609029

  29. Thapliyal H, Arabnia HR, Srinivas M (2006) Reduced area low power high throughput bcd adders for ieee 754r format. cs/0609036

  30. Thapliyal H, Jayashree H, Nagamani A, Arabnia H (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Gavrilova M, Tan C (eds) Transactions on computational science XVII, Lecture notes in computer science, vol 7420, pp 73–97. Springer Berlin Heidelberg

  31. Thapliyal H, Ranganathan N, Kotiyal S (2014) Reversible logic based design and test of field coupled nanocomputing circuits. In: Field-coupled nanocomputing. Springer, New York, pp 133–172

  32. Thapliyal H, Srinivas M, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: ESA, pp 165–181

  33. Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: reversible logic synthesis of parallel binary adder-subtractor. In: Embedded systems and applications, pp 60–68

  34. Vacca M (2013) Emerging technologies-nanomagnets logic (nml). Ph.D. thesis, Politecnico di Torino

  35. Vacca M, Graziano M, Wang J, Cairo F, Causapruno G, Urgese G, Biroli A, Zamboni M (2014) Nanomagnet logic: an architectural level overview. Lecture Notes in Computer Science, pp 223–256

  36. Varga E, Orlov A, Niemier MT, Hu XS, Bernstein GH, Porod W (2010) Experimental demonstration of fanout for nanomagnet logic. IEEE Trans Nanotechnol 9(6):668–670

    Article  Google Scholar 

  37. Yang G, Song X, Hung WN, Perkowski MA (2008) Bi-directional synthesis of 4-bit reversible circuits. Computer J 51(2):207–215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Thapliyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapliyal, H., Labrado, C. & Chen, K. Design procedures and NML cost analysis of reversible barrel shifters optimizing garbage and ancilla lines. J Supercomput 72, 1092–1124 (2016). https://doi.org/10.1007/s11227-016-1644-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1644-8

Keywords

Navigation