Abstract
To meet increasing bandwidth demand, cellular network operators have increasingly deployed wireless local area networks (WLANs) on top of their cellular networks [e.g., long term evolution (LTE)]. State-of-the-art smartphones can utilize such heterogeneous LTE and WLAN radio bandwidth by operating the multi-radio interfaces simultaneously. This paper investigates how such heterogeneous radio bandwidth should be controlled and allocated to multi-radio user devices. A software-defined networking (SDN)-based resource allocation framework is proposed that can properly orchestrate heterogeneous radio bandwidth in emerging LTE/WLAN multi-radio networks in a centralized and holistic manner. The proposed framework is implemented and evaluated in a computing environment that combines a real SDN controller with simulated network forwarding entities.








Similar content being viewed by others
References
Cisco (2015) Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019. Technical report
3GPP TS 23.402 (2015) Architecture Enhancements for Non-3GPP Accesses. Version 13.4.0
Oliva A et al (2011) IP flow mobility: smart traffic offload for future wireless networks. IEEE Commun Mag 49(10):124–132
3GPP TS 23.261, (2015) IP Flow Mobility and Seamless Wireless Local Area Network (WLAN) Offload. Version 13.0.0
Yoon W, Jang B (2013) Enhanced non-seamless WLAN offload for LTE and WLAN networks. IEEE Commun Lett 17(10):1960–1963
Nirjon S, Nicoara A, Hsu CH, Singh J, Stankovic J (2012) MultiNets: policy oriented real-time switching of wireless interfaces on mobile devices. In: IEEE RTAS’12, pp 251–260
Mahindra R, Viswanathan H, Sundaresan K, Arslan MY, Rangarajan S (2014) A practical traffic management system for integrated LTE-WiFi Networks. In: ACM MobiCom 189–200
McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74
Jain S et al (2013) B4: experience with a globally-deployed software defined WAN. In: ACM SIGCOMM’13, pp 3–14
VMware (2013) The VMware NSX network virtualization platform. Technical White Paper
Jin X et al (2013) SoftCell: scalable and flexible cellular core network architecture. In: ACM CoNEXT’13, pp 163–174
Nagaraj K, Katti S (2014) ProCel: smart traffic handling for a scalable software EPC. In: ACM HotSDN’14, pp 43–48
Moradi M, Wu W, Li LE, Mao ZM (2014) SoftMoW: recursive and reconfigurable cellular WAN architecture. In: ACM CoNEXT’14, pp 377–390
Basta A, Kellerer W, Hoffmann M, Hoffmann K, Schmidt ED (2013) A virtual SDN-enabled LTE EPC Architecture: a case study for S-/P-Gateways functions. In: SDN4FNS’13, pp 1–7
Basta A, Kellerer W, Hoffmann M, Morper HJ, Hoffmann K (2014) Applying NFV and SDN to LTE mobile core gateways; the functions placement problem. In: Cell Net, pp 33–38
Ali-Ahmad H et al (2013) CROWD: an SDN approach for DenseNets. In: EWSDN’13, pp 25–31
Li LE, Mao ZM, Rexford J (2012) Towards software defined cellular networks. In: EWSDN’12, pp 7–12
Juniper (2013) Mobile SDN: The future is virtual. White Paper
Chiang M, Low SH, Calderbank AR, Doyle JC (2007) Layering as optimization decomposition. Proc IEEE 95(1):255–312
Kelly FP (1997) Charging and rate control for elastic traffic. Eur Trans Telecommun 8:33–37
Choi Y, Kim H, Han SW, Han Y (2010) Joint resource allocation for parallel multi-radio access in heterogeneous wireless networks. IEEE Trans Wirel Commun 9(11)
Panah AY, Yeh SP, Himayat N, Talwar S (2012) Utility-based radio link assignment in multi-radio heterogeneous networks. In: GC’12 International Workshop on Emerging Technologies for LTE-Advanced and Beyond-4G
Heinonen J, Partti T, Kallio M, Lappalainen K, Flinck H, Hillo J (2014) Dynamic tunnel switching for SDN-Based Cellular core networks. In: Workshop on all things cellular, pp 27–32
Pentikousis K, Wang Y, Hu W (2013) Mobileflow: toward software-defined mobile networks. IEEE Commun Mag 51(7):44–53
Gudipati A, Perry D, Li LE, Katti S (2013) SoftRAN: Software defined radio access network. In: ACM HotSDN’13, pp 25–30
Gudipati A, Li LE, Katti S (2014) RadioVisor: a slicing plane for radio access networks. In: ACM HotSDN’14, pp 237–238
Bernardos CJ et al (2014) An Architecture for software defined wireless networking. IEEE Wirel Commun 21(3):52–61
Tan W, Zhang J, Peng C, Xia B, Kou Y (2014) SDN-enabled converged networks. IEEE Wirel Commun 21(6):79–85
Mendonca M, Obraczka K, Turletti T (2012) The Case for softwaredefined networking in heterogeneous networked environments. In: ACM CoNEXT Student’12, pp 59–60
Ali-Ahmad H, Cicconetti C, Oliva A, Mancuso V, Sama MR, Seite P, Shanmugalingam S (2013) An SDN-based network architecture for extremely dense wireless networks. In: Proceedings of SDN4FNS’13
Yap KK et al (2010) Blueprint for Introducing Innovation into Wireless Mobile Networks. In: ACM VISA’10, pp 25–32
Chen T, Zhang H, Chen X, Tirkkonen O (2014) SoftMobile: control evolution for future heterogeneous mobile networks. IEEE Wirel Commun 21(6):70–78
Lantz B, Heller B, McKeown N (2010) A network in a laptop: rapid prototyping for software-defined networks. In: ACM Hotnets, pp 1–6
Gupta M, Sommers J, Barford P (2013) Fast, Accurate Simulation for SDN Prototyping. In: ACM HotSDN, pp 31–36
Klein D, Jarschel M (2013) An Openflow extension for the OMNeT++ INET framework. In: SimuTools, pp 322–329
Wang SY, Chou CL, Yang CM (2013) Estinet open flow network simulator and emulator. IEEE Commun Mag 51(9):110–117
ns-3. http://www.nsnam.org/. Accessed 20 Dec 2013
OpenStack. http://www.openstack.org/
Pfaff B, Pettit J, Koponen T, Jackson E, Zhou A, Rajahalme J, Gross J, Wang A, Stringer J, Shelar P, Amidon K, Casado M (2015) The Design and implementation of Open vSwitch. In: Usenix NSDI
Lee B, Park SH, Shin J, Yang S (2014) IRIS: the Openflow-based recursive SDN controller. In: International Conference on Advanced Communication Technology (ICACT), pp 1227–1231
Park SH, Lee B, You J, Shin J, Kim T, Yang S (2014) RAON: recursive abstraction of OpenFlow networks. In: European Workshop on Software Defined Networks, pp 115–116
3GPP TS 36.300, (2015) Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN). Overall description. Version 12(7)
Bertsekas DP, Tsitsiklis JN (1989) Parallel and distributed computation: numerical methods. Prentice-Hall, USA
Lin X, Shroff N (2006) Utility maximization for communication networks with multipath routing. IEEE Trans Autom Control 51(5):766–781
Li Y, Zhou L, Yang Y, Chao HC (2011) Architecture for joint multi-path routing and scheduling in wireless mesh networks. Mathe Comput Model 53:458–470
Shi H, Prasad RV, Onur E, Niemegeers IGMM (2014) Fairness in wireless networks—issues, measures and challenges. IEEE Commun Surv Tutor 16:5–24
Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans Netw 8(5):556–567
McCormick B, Kelly F, Plante P, Gunning P, Ashwood-Smith P (2014) Real time alpha-fairness based traffic engineering. In: ACM HotSDN, pp 199–200
Bertsimas D, Farias VF, Trichakis N (2012) On the efficiency-fairness trade-off. Manag Sci 58(12):2234–2250
Jarschel M, Oechsner S, Schlosser D, Pries R, Goll S, Tran-Gia P (2011) Modeling and performance evaluation of an openflow architecture. In: Teletraffic congress (ITC), pp 1–7
Mahmood K, Chilwan A, sterb ON, Jarschel M (2014) On The Modeling of OpenFlow-based SDNs: The Single Node Case, arXiv
Ismail M, Zhuang W (2012) A distributed multi-service resource allocation algorithm in heterogeneous wireless access medium. IEEE JSAC 30(2):425–432
Huawei (2015) Hetnet: the future of mobile networking. White Paper
Acknowledgments
This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (B0101-15-233, Smart Networking Core Technology Development). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education) (NRF-2015R1D1A1A01056606).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kang, S., Yoon, W. SDN-based resource allocation for heterogeneous LTE and WLAN multi-radio networks. J Supercomput 72, 1342–1362 (2016). https://doi.org/10.1007/s11227-016-1662-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-016-1662-6