Skip to main content
Log in

Integrating 3D image descriptors of margin sharpness and texture on a GPU-optimized similar pulmonary nodule retrieval engine

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Due to the difficulty to diagnose lung cancer, it is important to integrate content-based image retrieval methods with the pulmonary nodule classification process, since they are capable of retrieving similar cases from large image databases that were previously diagnosed. The goal of this paper is to evaluate an integrated image feature vector, composed of 3D attributes of margin sharpness and texture, on similar pulmonary nodule retrieval, and to optimize the runtime of nodule comparison process with a graphics processing unit (GPU). Retrieval efficiency was evaluated on the ten most similar cases, on different multiprocessor architectures. Results showed that integrated attributes obtained higher efficiency on similar nodule retrieval, with an increase of up to 2.6 percentage points compared to isolated margin sharpness and texture descriptors. Results also showed that GPU increased nodule retrieval performance with a speedup of 23.7\(\times \) on nodule comparison runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Google Scholar 

  2. Akgül CB, Rubin DL, Napel S, Beaulieu CF, Greenspan H, Acar B (2011) Content-based image retrieval in radiology: current status and future directions. J Digit Imag 24(2):208–222

    Article  Google Scholar 

  3. Armato SG III, Mclennan G, Bidaut L, Mcnitt-gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, Macmahon H, Beek EJRV, Yankelevitz D, Biancardi AM, Bland PH, Brown MS (2011) The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38:915–931

    Article  Google Scholar 

  4. Bedo MVN, Santos DP, Ponciano-Silva M, Azevedo-Marques PM, Carvalho APLF, Traina-Junior C (2016) Endowing a content-based medical image retrieval system with perceptual similarity using ensemble strategy. J Digit Imag 29(1):22–37

  5. Bugatti PH, Kaster DS, Ponciano-Silva M, Traina C Jr, Azevedo-Marques PM, Traina AJ (2014) PRoSPer: perceptual similarity queries in medical CBIR systems through user profiles. Comput Biol Med 45:8–19

    Article  Google Scholar 

  6. Choi WJ, Choi TS (2014) Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor. Comput Meth Progr Biomed 113(1):37–54

    Article  Google Scholar 

  7. Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imag Graph 31(4–5):198–211

    Article  Google Scholar 

  8. Ferreira Jr JR, Oliveira MC (2015) Cloud-based NoSQL open database of pulmonary nodules for computer-aided lung cancer diagnosis and reproducible research. In: Proceedings of the 2015 annual meeting of the society for imaging informatics in medicine (SIIM), pp 1–4

  9. Ferreira Jr JR, Oliveira MC (2015) GPU-optimized pulmonary nodule retrieval based on 3D margin sharpness descriptors. In: Proceedings of XI workshop de Visão computacional (WVC), pp 182–187

  10. Ghoneim DM, Toussaint G, Constans JM, de Certaines JD (2003) Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magnet Reson Imag 21(9):983–987

    Article  Google Scholar 

  11. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  12. Jayalakshmi T, Santhakumaran A (2011) Statistical normalization and back propagation for classification. Int J Comput Theory Eng 3(1):1793–8201

    Google Scholar 

  13. Kirk DB, Wen-mei WH (2010) Programming massively parallel processors: a hands-on approach. Morgan Kaufmann, USA

    Google Scholar 

  14. Lam M, Disney T, Pham M, Raicu D, Furst J, Susomboon R (2007) Content-based image retrieval for pulmonary computed tomography nodule images. Med Imag 6516:65,160N–65,160N-12

    Article  Google Scholar 

  15. Lam MO, Disney T, Raicu DS, Furst J, Channin DS (2007) BRISC—an open source pulmonary nodule image retrieval framework. J Digit Imag 20(1):63–71

    Article  Google Scholar 

  16. Levman JE, Martel AL (2011) A margin sharpness measurement for the diagnosis of breast cancer from magnetic resonance imaging examinations. Acad Radiol 18(12):1577–1581

    Article  Google Scholar 

  17. Liu L (2013) Computing infrastructure for big data processing. Front Comput Sci 7(2):165–170

    Article  MathSciNet  Google Scholar 

  18. Mehdi A, Vassili K, Eduard S, Vahid T (2014) A comprehensive framework for automatic detection of pulmonary nodules in lung CT images. Image Anal Stereol 33(1):13–27

    Article  Google Scholar 

  19. Montagnat J, Breton V, Magnin I et al (2003) Using grid technologies to face medical image analysis challenges. In: Proceedings of the first international workshop on biomedical computations on the grid (BioGrid), pp 588–593

  20. Müller H, Müller W, Squire DM, Marchand-Maillet S, Pun T (2001) Performance evaluation in content-based image retrieval: overview and proposals. Pattern Recognit Lett 22(5):593–601

    Article  MATH  Google Scholar 

  21. Ng G, Song Y, Cai W, Zhou Y, Liu S, Dagan Feng D (2014) Hierarchical and binary spatial descriptors for lung nodule image retrieval. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC), pp 6463–6466

  22. Oliveira MC, Cirne W, Azevedo-Marques PM (2007) Towards applying content-based image retrieval in the clinical routine. Future Gener Comput Syst 23(3):466–474

    Article  Google Scholar 

  23. Oliveira MC, Ferreira JR (2013) A bag-of-tasks approach to speed up the lung nodules retrieval in the bigdata age. In: Proceedings of the 15th IEEE International Conference on E-health Networking, Application & Services (IEEE HealthCom), pp 632–636

  24. Pacheco P (2011) An introduction to parallel programming. Elsevier, Amsterdam

    Google Scholar 

  25. Prochazka F, Oliveira MC (2012) Aplicabilidade de GPUs de baixo custo na otimização da análise de similaridade de imagens. In: Proceedings of the XXV Conference on Graphics, Patterns and Images (SIBGRAPI), pp 18–23

  26. Silva MPd, Souza JP, Bugatti PH, Bedo MV, Kaster DS, Braga RT, Bellucci AD, Azevedo-Marques PM, Traina C, Traina AJ (2013) Does a CBIR system really impact decisions of physicians in a clinical environment? In: Proceedings of 26th IEEE international symposium on computer-based medical systems (IEEE CBMS), pp 41–46

  27. Traina AJ, Balan AG, Bortolotti LM, Traina C (2004) Content-based image retrieval using approximate shape of objects. In: Proceedings of the 17th IEEE international symposium on computer-based medical systems (IEEE CBMS), pp 91–96

  28. Truong MT, Ko JP, Rossi SE, Rossi I, Viswanathan C, Bruzzi JF, Marom EM, Erasmus JJ (2014) Update in the evaluation of the solitary pulmonary nodule. Radiographics 34(6):1658–1679

    Article  Google Scholar 

  29. Tsymbal A, Meissner E, Kelm M, Kramer M (2014) Towards cloud-based image-integrated similarity search in big data. In: Proceedings of the 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp 593–596

  30. Xu J, Napel S, Greenspan H, Beaulieu CF, Agrawal N, Rubin D (2012) Quantifying the margin sharpness of lesions on radiological images for content-based image retrieval. Med. Phys. 39:5405–5418

    Article  Google Scholar 

  31. Yadav K, Mittal A, Ansari M, Vishwarup V (2012) Parallel implementation of similarity measures on GPU architecture using CUDA. Ind J Comput Sci Eng 3(1):1–9

  32. Zhang X, Liu W, Dundar M, Badve S, Zhang S (2015) Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans Med Imag 34(2):496–506

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Raniery Ferreira Junior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira Junior, J.R., Oliveira, M.C. & de Azevedo-Marques, P.M. Integrating 3D image descriptors of margin sharpness and texture on a GPU-optimized similar pulmonary nodule retrieval engine. J Supercomput 73, 3451–3467 (2017). https://doi.org/10.1007/s11227-016-1818-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1818-4

Keywords