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Abstract Alignment-free methods are one of the mainstays of biological sequence
comparison, i.e., the assessment of how similar two biological sequences are to each
other, a fundamental and routine task in computational biology and bioinformatics.
They have gained popularity since, even on standard desktop machines, they are faster
than methods based on alignments. However, with the advent of Next-Generation
SequencingTechnologies, datasetswhose size, i.e., number of sequences and their total
length, is a challenge to the execution of alignment-free methods on those standard
machines are quite common. Here, we propose the first paradigm for the computation
of k-mer-based alignment-free methods for Apache Hadoop that extends the problem
sizes that can be processed with respect to a standard sequential machine while also
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granting a good time performance. Technically, as opposed to a standard Hadoop
implementation, its effectiveness is achieved thanks to the incremental management
of a persistent hash table during the map phase, a task not contemplated by the basic
Hadoop functions and that can be useful also in other contexts.

Keywords Alignment-free sequence comparison and analysis · Distributed
computing · MapReduce · Hadoop

1 Introduction

High-performance computing (HPC, for short) in Bioinformatics, and more in general
in the Life Sciences, has a long history of successes, although it has been classically
associated with “Big Science Bioinformatics” tasks such as protein structure predic-
tion, e.g., [1], or genome assembly, e.g., [30]. However, the growing amount of data
that the new sequencing technologies provide poses unprecedented computational
challenges that even the most basic and routine bioinformatics applications become
amenable for HPC implementations. Nowadays, it is clear that most scientific data
analyses can benefit from parallel frameworks to achieve speedup and scalability
[35]. Following that trend, the MapReduce paradigm and its reference implementa-
tion Apache Hadoop are becoming a standard for solving bioinformatics problems
using a distributed approach (see, e.g., [12,36]). Particularly relevant for this paper is
the assessment of how similar to each other biological sequences in a set are. Such
an information may then be used for various further investigations, e.g., phylogenetic
studies. For brevity,we refer to this areawith the classic termof SequenceComparison:
it is a central part of Sequence analysis [11,21].

1.1 Sequence comparison and HPC

Sequence comparison methods can be broadly divided into two main branches. The
first, which can be considered to be theHoly Grail of Sequence analysis [21], consists
of methods that assess the similarity among sequences via alignments. Further infor-
mation can be found in [2]. Unfortunately,most of the alignmentmethods requiremore
andmore significant computation time, due to their intrinsic time complexity that com-
pounds with the growing quantity of sequence data they have to process in each run.
To address, at least in part, such a drawback, a second branch of Sequence Comparison
methods has emerged, referred to as Alignment free. Although fairly recent [39] with
respect to alignment algorithms, it has grown very rapidly [38], becoming very quickly
populated with methods that are particularly appealing because their running time is
proportional to the length of the input sequences, even if they are usually less accurate
than traditional alignment-based approaches. Moreover, they have been proven to be
effective and significant for biological investigations [7,15]. Further information can
be found in [38].

Relevant for HPC is the following state of the art. Due to their routine use in
Sequence Analysis, in particular for large database searches, a considerable effort to
parallelize the reference alignment methods has taken place, with some degree of suc-

123



An effective extension of the applicability of alignment-free… 1469

cess. Here, we limit ourselves to mention [20,27,28,40] and references therein. On
the other hand, the design of alignment-free methods for HPC has not received analo-
gous attention: to the best of our knowledge, only one effort is present in the literature
[19] and it deals almost exclusively with implementations on a GRID infrastructure,
leaving open performance assessments.

To appreciate ourwork, an important distinction has to bemade between alignment-
free methods and existing methods that deal with the collection of k-mer statistics in
biological sequences, i.e., howmay times each sequence of length k appears in a longer
sequence. Due to its fundamental nature, many algorithms computing those statistics
havebeendeveloped, supportedbyvarious architectures.We limit ourselves tomention
the latest of them [3,10,29]. Although many alignment-free methods are based on k-
mer statistics, it is not clear that the available algorithms collecting those statistics
in an HPC framework can be profitably used as base to develop HPC alignment-free
methods. For that matter, it is not even clear that those methods take full advantage
of the computer architecture supporting them. Those aspects, certainly related to this
research, deserve to be carefully investigated on their own and, in fact, this research
group has work in progress in this area. For the sake of completeness, the problem of
performing read mapping in a distributed setting using the MapReduce paradigm, a
topic somewhat related to the one of this paper, is considered in [32].

1.2 A synopsis of our contributions and organization of the paper

Typically, an alignment-free method takes as input a collection of sequences and
returns, as output, a matrix reporting, for each pair, a numerical score assessing how
similar these are. We refer to the size of the input collection as problem size. It has two
parameters: the number of sequences and their total length. Given the growing amount
of sequence data that is produced nowadays in the life sciences and, in particular,
for meta-genomic and population-genomic studies [22,24], it is important both to (a)
extend the range of problem sizes towhich alignment-freemethods can be successfully
applied and (b) reduce the time required for their computation. Those are the goals of
this paper.

From the many available [38,39], we have chosen a representative sample of
alignment-free methods: the ones that are based on collecting subword statistics in
sequences, e.g., the number of occurrences of substring of length k which are referred
to as k-mers, to assess sequence similarity. They are reported in Sect. 2.1.

We have tested those methods extensively in a sequential setting to assess their
limits in terms of problem sizes that can be handled on a conventional sequential
machine. With use of a specific hardware configuration, we obtain a benchmark for
the quantitative evaluation of how well the distributed solution proposed here meets
goal (a). Since the memory size available on a sequential machine is the key resource
constraint limiting the execution of those methods, our experiments are performed
with varying memory sizes. The corresponding results are provided in Sect. 4. A per-
formance bottleneck is identified, due to the considerable amount of memory required
by the data structures those algorithms use to maintain the k-mer occurrence counts,
i.e., mainly a hash table. This suggest that, to extend the problem sizes that can be
handled by those methods, it is convenient to resort to a distributed approach.

123



1470 G. Cattaneo et al.

At a technical level, we propose aMapReduce paradigm, based on Hadoop, for the
computation of k-mer-based alignment-free methods. It is reported in Sect. 3. One
of its features is its ability to increase the span of the problems that can be solved
[goal (a)] by virtually spreading over several nodes of a Hadoop cluster the core data
structure used by these algorithms, i.e., the already mentioned hash table. Essential
for its efficiency is the proper management of this data structure. Indeed, although one
could seamlessly delegate its management to the underlying Hadoop framework, the
performance of the resulting solution has turned out to be disappointing. Therefore,
we propose a new solution where this data structure is managed explicitly by our
code. This technique may be of use also in other bioinformatics contexts (see again
[22,24]).Moreover, the proposed distributed solution is able to speed up the processing
of sequences by splitting them into pieces that can be processed in parallel [goal (b)].
Section 3 provides details about this Hadoop implementation.

In addition to the technical contribution just mentioned, the experiments reported in
Sect. 4 shows that theHadoop solution proposed here is quite effective in extending the
state of the art with respect to goals (a) and (b). A quantification, being quite dependent
on the hardware that has been used for the experiments, is provided in Sect. 4.

2 Background

To make the presentation in this paper self-contained, we provide some background
and references regarding alignment-free sequence comparison and the MapReduce
paradigm and Hadoop.

2.1 A selection of alignment-free sequence comparison methods

One of the main goals of Biology and, more in general, the Life Sciences in the study
of biological sequences is to assess either homology or function or both. The first
consists of establishing the evolution of a biological sequence, which can be an entire
genome or even a single gene. The second consists of discovering what is the function
of a biological sequence, usually newly discovered.

Both homology and function are nearly impossible to formalize in mathematical
terms since they are inherently related to the evolution of living species, which is a
process that can be described only in part by Mathematics. Yet, it has been observed
and validated experimentally that a mathematical estimate of “similarity” among a set
of biological sequences gives in most cases good indications about common ancestry
and function [21].

An example may be of help in illustrating the impact of similarity functions on
biological research. Assume one is given a set of species for which one is interested
in knowing their common ancestry, i.e., an evolutionary taxonomy, which is usually
represented via a phylogenetic tree. Usually a reliable taxonomy requires many years
of investigation and deep biological knowledge. Figure 1a provides a taxonomy of 15
species that has been obtained solely with the use of biological knowledge, with very
little computational work. It would be certainly of great benefit to the biologists to
start from a working hypothesis for their classification. Here clustering, in particular
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Fig. 1 a The taxonomy of 15 species obtained by the National Center for Biotechnology Information
(NCBI); b Hierarchical Clustering of the same 15 species as in (a). It is based on a quantification of the
similarity between each pair of mitochondrial genomes of the species listed at the leaves of the tree. Its
construction took only a few seconds on a conventional computer. The sequence similarity function is based
on Kolmogorov complexity and data compression [15]

Hierarchical, can be of great help, in particular with the use as distance function of the
similarity between pairs of genomes. Figure 1b provides an example of Hierarchical
Clustering with the same 15 species as in (a). The two trees are remarkably close;
therefore, the tree built with computational techniques is a good starting point for a
more refined taxonomy.

As already mentioned in the Introduction, alignment-free methods are now a stan-
dard for sequence comparison. Among the many available, [38,39], we have chosen a
representative sample of alignment-free methods: the ones that are based on subword
statistics in sequences to assess sequence similarity. The first three methods that we
present use exact k-mer occurrence counts while the remaining one uses approximate
k-mer occurrence counts. Mathematically, they are all distance or dissimilarity mea-
sures (see [17] for definitions). Moreover, with the use of a hash table, it is simple to
obtain algorithms computing them in linear time. The details are left to the reader.

Consider an alphabet Σ of n symbols and an integer k ≥ 1. Let Σk be the corre-
sponding set of k-mers. It is convenient to associate to each k-mer x its rank in the
lexicographic order of k-mers.

Squared Euclidean Dissimilarity Measure [39,43]. It is defined as:

dSE (S, Q) =
nk∑

i=1

(si − qi )
2 (1)

where S and Q are two sequences, and si and qi are the number of occurrences of the
i th k-mer in S and in Q, respectively.

D2 Score[37]. It is defined as:

D2(S, Q) =
nk∑

i=1

si × qi (2)
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For completeness,wemention that notable variants of D2 are DS
2 and D

∗
2 , defined in [7]

and [37], respectively. They will not be considered in this study since computationally
they are as demanding as D2.

Feature Frequency Profile (FFP) [34]. Let Sk and Qk be the empirical probability
distribution vectors of the k-mers in S andQ, respectively. FFP is the Jensen–Shannon
divergence [42] between them; that is,

J Sk(Sk, Qk) = 1

2
K L(Sk, Mk) + 1

2
K L(Qk, Mk) (3)

where Mk = (Sk + Qk)/2 and KL is the Kullback–Leibler divergence [25].

Spaced-word frequencies [4,23]. A spaced-word over an alphabet Σ is a word com-
posed of symbols fromΣ and wild-card symbols. This approach computes the relative
frequencies of spaced words with respect to a single fixed spaced pattern P of match
and don’t care positions. Then, it computes the distance between two sequences by
combining their spaced-word frequencies using a proper distance function measure
such as Squared Euclidean dissimilarity measure.

2.2 MapReduce and Hadoop

A computing paradigm that has become very popular is MapReduce [9], where a
generic computation takes a set of input 〈 key, value 〉 pairs, and produces a set of output
〈key, value〉 pairs. The computations to carry on these pairs are expressed through the
definition of two functions:map and reduce. The map function takes an input pair and
produces a set of intermediate 〈key, value〉 pairs. All the intermediate values having
the same key are grouped and passed to the reduce function. This function accepts
a key and a set of values for that key. It aggregates those values to form another set
of pairs (possibly, a smaller set; in general just one output pair is produced per each
reduce function). Map and reduce functions are executed, as tasks, on the nodes of a
distributed system.

Here, we make use of Apache Hadoop, a java-based open source distributed
computing environment that is currently the most popular framework supporting
MapReduce. It allows for reliable, scalable and distributed computing. The newer
version is mainly composed of two components: a data processing framework called
Yet Another Resource Negotiator and the Hadoop Distributed File System (HDFS)
[33]. The data processing framework organizes a computation as a sequence of user-
definedMapReduce operations on datasets of 〈key, value〉 pairs. These operations are
executed, as tasks, across the nodes of a cluster. Each node may exploit core level
parallelism by running several tasks at the same time by means of Hadoop contain-
ers. The HDFS is a distributed and block-structured file system optimized to run on
commodity hardware and able to provide fault tolerance through replication of data. A
v2.x Hadoop simple cluster consists of a singlemaster node and multiple slave nodes.
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3 Hadoop alignment-free sequence comparison

For the methods described in Sect. 3.1, the basic paradigm adopted here for their com-
putation is an extension of the algorithm proposed by Elsayed et al. [13] to assess
similarity in large document collections. We refer to it as a paradigm since it is
described independently of the dissimilarity measure that is actually used to compare
sequences. It requires the execution of twoMapReduce jobs. The first one, described
in Sect. 3.1.1, extracts all the k-mers, either exact or approximate, in a sequence (or
part of it). The second one, described in Sect. 3.1.2, uses that information to compute
a dissimilarity measure provided in input.

Since the performance of the basic paradigm turns out to be disappointing (see Sect.
4), an improved version of it is proposed here and it is described in Sect. 3.2.

3.1 The basic paradigm and its straightforward Hadoop implementation

3.1.1 Indexing

This job is used to extract, for each input sequence, the k-mers that occur in that
sequence and that are later used to compute the dissimilarity between sequences. For
completeness, we mention that this is the same strategy used by BioPig [31].

Mapper Themap function takes as an input a pair 〈idSeq, S〉, where idSeq is a unique
identifier for the input sequence S. Then, for each k-mer x present in S, it outputs the
pair 〈x, (idSeq, 1)〉. The extraction of the k-mers from S is performed incrementally
scanning it from left to right via shift operations (details left to the reader). At the end
of that task, finally, each map function communicates to the reducers the length of the
sequence via the pair 〈idSeq, |S|〉.

Reducer Based on the 〈kmer , (idSeq, 1)〉 values produced by the map function, the
reduce function receives by the Hadoop framework a set of pairs 〈x, L〉, where L
is the list of (idSeq, 1) pairs corresponding to that particular k-mer. Input pairs are
aggregated so as to produce as output the number of times each k-mer x appears in
every input sequence. That is encoded as a record 〈x, L ′〉, where L ′ is the mentioned
statistics. Each record is saved in a distinct Hadoop SequenceFile to be processed
in the second step. Moreover, each reduce task returns the size of each sequence it
processed using the HDFS cache mechanism.

3.1.2 Dissimilarity measurement

Given as input one of the measures defined in Sect. 2.1, identified by means of a set
of standard labels, and the output of job 1, this job is used to evaluate the pairwise
dissimilarity for each pair of input sequences.

Mapper Given a pair 〈x, L ′〉, the map function computes the partial dissimilarity for
each distinct pair of sequences in L ′ according to the input-providedmeasure identified
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by the label D. As output, the map function emits a 〈(idSeqA, idSeqB , D), pdiss〉
pair, where idSeqA and idSeqB are the identifiers of two input sequences, while pdiss
is the partial dissimilarity, that is, a partial evaluation of the measure D (as limited to
only the statistics available to the map function).

Reducer Based on the 〈(idSeqA, idSeqB , D), pdiss〉 values produced by the map
function, the reduce function receives by the Hadoop framework a set of pairs
〈(idSeqA, idSeqB , D), list{pdiss′}〉, where list{pdiss′} is the list of all the par-
tial dissimilarities among the sequences with identifiers idSeqA and idSeqB , with
respect to the measure D. As output of the computation, the reduce function returns
the pair 〈(idSeqA, idSeqB , D), diss〉, where diss is the final value of D with respect
to these two sequences.

3.2 A more effective Hadoop implementation of the basic paradigm

Our first implementation of the paradigm presented in Sect. 3.1 makes a straightfor-
ward use of the facilities provided by the Hadoop framework. A careful profiling of
it allowed us to identify some of its performance bottlenecks (data not shown and
available upon request). The first is that the execution of the map tasks run during the
Indexing job is significantly slowed down by the number of output pairs so produced
(one for each k-mer found). The second is related to the way the standard Hadoop
input strategies can be used for processing very long sequences. The programmer is
given two options: (a) to process a sequence by having different map tasks process
different lines of a same sequence; (b) to have a single map task completely load a
sequence into memory before indexing it. The first option does not allow to index k-
mers spanning two ormore lines, while the second does not workwell or does not work
at all with very long sequences, that is, letting one single map task (instead of many)
process a long sequence prevents the possibility of exploiting the implicit parallelism
of Hadoop. Moreover, very long sequences may be big enough to exceed the memory
of a map task, thus causing its failure. We present the two following optimizations to
alleviate these problems.

1. Incremental in-mapper combining
The map tasks in the Indexing job of our paradigm now take advantage of a hash
table data structure. It is used to both index and sum the frequencies of the k-mers
counts while scanning an input sequence.

2. Input split strategies
We propose an input strategy that can be used by map tasks to manage very long
multi-line sequences during the Indexing job of our paradigm. It works by splitting
an input sequence S, encoded as a FASTA file, in several records 〈idS, (Si , Si+1)〉,
where idS is an identifier for S, Si is the i th row of S and Si+1 contains the first
k − 1 characters of the (i + 1)th row of S (Si+1 is empty if i is the last row of S).

With respect to the straightforward implementation, the first optimization has two
important advantages. The first is that the execution of a map task is not slowed down
by the frequent outputs, as there will be only one single bulk output phase at the end
of the task, including all the output pairs. The second is that by aggregating multiple
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occurrences of the same k-mer, the number of output pairs of a map task is greatly
reduced.

Such an optimization is also important methodologically. Indeed, one could use
the Hadoop built-in Combiner module, since it allows a map task to buffer all of its
output pairs and to summarize them, through the execution of a user-defined combiner
function. However this solution has a major drawback with respect to our solution:
the aggregation is not incremental but, generally, takes place at the end of the task.
This implies that the map task has to keep in memory all of its output pairs during
its execution. As a consequence, it would likely run out of memory when processing
long sequences. To avoid this problem, we explicitly implemented this optimization by
redefining themethods used byHadoop to control the initialization and the finalization
of the map task. It is interesting to note that in this bioinformatics context, as well as
the context of image processing [5], there is need of explicitly managing and updating
a persistent data structure (here, a hash table; a matrix, in [5]) during the execution of
a map task. So, the solution we propose here, together with the one in [5], provides
tools for incremental in-mapper combining.

The second optimization represents a more efficient alternative to the standard
Hadoop input strategies available when processing very long sequences, as it is able
to manage sequences of arbitrary length while exploiting the implicit parallelism
available with Hadoop.

4 Experiments

4.1 Experimental setup

4.1.1 Datasets

It is somewhat unfortunate that there are no commonly accepted or standard bench-
mark datasets available in the literature for the scenario that nowhas become a standard
for sequence analysis, due to the pervasiveness of high-throughput sequencing tech-
nologies: very large datasets that are composed of many relatively short genomes (e.g.,
megabytes in length). Indeed,methods that have been presented in theLiterature hardly
use the same datasets for their experimentation, e.g., [15,26].

Given the above state of the art, we set up two datasets, referred to as 1 and 2, for our
experiments. Thefirst comes frommeta-genomic studies, e.g., [24], and includes all the
sequencedmicrobial genomes (bacteria, archea, viruses) available in public databases.
It consists of 40, 988 genomes, for a total of 172 GB. This scenario accounts also for
the way in which the use of alignment-free methods is consolidated in the literature,
e.g., [26], the main difference being the size of the dataset.

The complementary scenario of very large datasets composed of few very long
genomes (e.g., gigabytes in length), due to computational constraint, has received very
little attention in the literature and the biological relevance provided by alignment-free
methods for datasets composed of, say, many mammalian genomes is still under study
(see, e.g., [14]). Therefore, we consider this scenario for the sake of completeness.
Again, there are no benchmark datasets available in the literature. Since the biologi-
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cal relevance of those methods is still under investigation, our Dataset 2 is obtained
artificially by generating at random 150 sequences on the DNA alphabet, each having
a size of 1.6 GB, for a total of 240 GB.

4.1.2 Hardware

All the experiments have been conducted on a homogeneous cluster of 5 nodes,
equipped each with 32 GB of RAM, 2 AMD Opteron @ 2.10 GHz processors, Cen-
tOS 6 operating system, 1 TB disk drive and a Giga-Ethernet network card. The
cluster includes four-slave node and a master node. The master node executes the
ResourceManager and the NameNode services, while the slave nodes execute
the DataNode and the NodeManager services. The Hadoop version is 2.7.1. On
each slave node, up to eight concurrent map/reduce tasks are allowed. A HDFS repli-
cation factor set to two and a block size set to 128 MB have been used.

Experiments involving sequential algorithms have been conducted by executing a
given algorithm on just one of the aforementioned slave nodes, once that the Hadoop
support has been disabled.

4.2 Results and discussion

The aim of the experimentation reported here is to provide evidence that the paradigm
discussed in Sect. 3.2 is indeed effective in extending the applicability, i.e., the range of
problem sizes that alignment-free measures can handle with respect to the sequential
setting. It is divided into three parts.

The first assesses that all the measures presented in Sect. 2.1 use essentially the
same amount of time and memory, in the sequential setting. The results are reported
in Fig. 2. Based on them, in what follows, we consider only the Squared Euclidean
dissimilarity measure to assess the limits of the sequential implementations and as a
term of comparison with the Hadoop paradigm.
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Fig. 2 An estimate of elapsed times (a) and overall memory (b) required for evaluating different dissimi-
larity measures among 60 sequences extracted from Dataset 1 with a total size of ≈600,000,000 characters,
using the sequential implementation. Measures based on exact k-mers counts have been tested with k = 12
while the approach based on spaced-word frequencies (SW) has been tested using a pattern containing 12
care positions and 2 don’t care positions
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The second assesses the limits of the sequential algorithms with respect to memory
size, since it is the key resource constraint limiting their execution.

The hardware and datasets available are used as follows: one slave processor of
the cluster described in Sect. 4.1.2 and from the ones available, we extract datasets
containing an increasing number of sequences. Moreover, we also vary the amount of
memory available to the algorithm. The same tests are repeated with the distributed
version of the algorithm, using 32 concurrent map/reduce tasks running on 4 slave
nodes. In addition, we use a value of k that is representative of the values that are com-
monly used in the literature [8,16,18], i.e., k = 12. The results are reported in Fig. 3.
It is to be noted that 150 sequences do not represent a limit to the execution of the
distributed algorithm, but it is rather the setting where we concluded our experimenta-
tion due to its long execution times. Given that observation, if we consider the dataset
coming frommeta-genomic studies and take as a reference sequential machine a slave
node equipped with 16 GB of RAM (that we take as a standard reference for desktop
computers), we notice that the distributed algorithm, executed using four times the
number of slave nodes, is able to solve problems that count at least five times the max-
imum number of sequences and at least four times the maximum size of sequences
processable by the corresponding sequential algorithm. As far as the second dataset is
concerned, the distributed algorithm, executed using four times the number of slave
nodes, is able to solve problems that count at least ten times the maximum number
and themaximum size of sequences processable by the corresponding sequential algo-
rithm. For completeness, Table 1 summarizes the speedups obtained by the distributed
algorithm proposed here with respect to the sequential implementation, using 16 GB
of memory, when considering the maximum number of sequences from Dataset 1 and
Dataset 2 processable by the sequential algorithm.

The third part of the experimentation assesses the scalability of the proposed distrib-
uted paradigm, compatible with the hardware available for this research, that is, how
its time performance improves with respect to the degree of parallelism the algorithm
is given on the cluster described in Sect. 4.1.2.

The hardware and datasets available are used as follows: four-slave nodes of the
cluster described in Sect. 4.1.2 and from the first dataset available, we consider the 60
longest sequences for the experiment, for an overall size of ≈600 MB.

Concerning the second dataset, we extract only the 20 longest sequences, for an
overall size of ≈32 GB. Such a choice is a good compromise since it allows for a
comparisonwith the sequential algorithmwhile keeping experimentation time limited.

The first dataset so obtained has been processed with k = 12, while the second one
has been processed with k = 10, since the sequential algorithm is unable to run in such
a setting with k = 12, again preventing the possibility of performing a comparative
analysis with the distributed algorithm. Moreover, we also vary the number of CPU
cores that are reserved to the cluster and, consequently, the number ofmap/reduce tasks
that are run concurrently. The same tests are repeated with the sequential algorithm.
The overall results are reported in Figs. 4, 5 and 6,wherewe also indicate the time spent
for steps 1 and 2, respectively (see basic paradigm in Sect. 3.1). For completeness, we
also report in Table 2 the speedups obtained by the distributed algorithm in these two
settings with respect to the sequential implementation, using 32 GB of memory.
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Table 1 Speedup of the distributed implementation with respect to the sequential implementation, with 16
GB of memory, k = 12 and an increasing amount of concurrent map/reduce tasks

Total no. of concurrent map/
reduce tasks

Speedup dataset 1 Speedup dataset 2

4 0.48 0.45

8 1.05 0.99

16 2.01 2.10

32 4.15 3.75

Speedup Dataset 1 refers to the experiment involving 30 sequences extracted from Dataset 1, with a total
size of ≈370,000,000 characters, roughly corresponding to the maximum number of sequences from this
dataset that can be processed by the Squared Euclidean dissimilarity measure (sequential implementation).
Speedup Dataset 2 refers to the experiment involving 15 sequences extracted from Dataset 2, with a total
size of≈26,000,000,000 characters, roughly corresponding to the maximum number of sequences from this
dataset that can be processed by the Squared Euclidean dissimilarity measure (sequential implementation)

Fig. 4 Elapsed times for evaluating the Squared Euclidean dissimilarity measure among 60 sequences
extracted from Dataset 1 with a total size of ≈600,000,000 characters, with k = 12 and an increasing
number of concurrent map/reduce tasks, using both the naive and improved versions of our distributed
paradigm

The following comments are in order. As expected, both the straightforward and
the improved version of our distributed paradigm scale well with the number of con-
tainers. Moreover, it is clear that the improved version of the paradigm performs much
better than the straightforward implementation, which would not be an improvement
with respect to the sequential setting. Those facts give indication of the effectiveness
of the splitting strategy and its refinement presented in Sect. 3. In addition, in set-
tings where the improved version of the distributed algorithm can be compared to the
sequential one, the distributed algorithm is obviously faster and much more so, when
the sequences tend to be few and long.

In conclusion, based on the results and discussions outlined above, the distributed
paradigm proposed here indeed extends the range of problem sizes that can be handled
with respect to the sequential setting. Moreover, it also allows for a considerable
speedup with respect to the sequential case. Finally, it is worth pointing out that the
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Fig. 5 Elapsed times for evaluating the Squared Euclidean dissimilarity measure among 60 sequences
extracted fromDataset 1with a total size of≈600,000,000 characters, with k = 12 and an increasing number
of concurrent map/reduce tasks. For completeness, we also report the time of the sequential algorithm
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Fig. 6 Elapsed times for evaluating the Squared Euclidean dissimilarity measure among 20 sequences
extracted from Dataset 2 of ≈1,600,000,000 characters each, with k = 10 and an increasing number of
concurrent map/reduce tasks. For completeness, we also report the time of the sequential algorithm

straightforward implementation of our distributed paradigm, run using 32 containers,
exhibits the same execution times of the sequential algorithm. This is a further evidence
of the relevance of our improvement.

A final observation is in order. As shown in Figs. 5 and 6, the performance hotspot
of the distributed algorithm changes from step 1 to step 2 when switching from k = 10
to k = 12, suggesting the following fact. When k is small, most of the execution time
is spent for extracting k-mers, while when k increases this time becomes negligible
with respect to the time spent for evaluating the dissimilarity function for each pair of
input sequences. Such a switch has the following explanation, which points to possible
future further improvement of the distributed algorithm proposed here. During step
2, a map task is run for each distinct k-mer found during step 1 and an output pair is
created for each pair of sequences where it appears. This implies that, when increasing

123



An effective extension of the applicability of alignment-free… 1481

Table 2 Speedup of the distributed implementation with respect to the sequential implementation, with 32
GB of memory and an increasing amount of concurrent map/reduce tasks

Total no. of concurrent map/
reduce tasks

Speedup dataset 1 Speedup dataset 2

4 0.28 1.39

8 0.61 3.04

16 1.42 6.10

32 2.43 10.21

Speedup Dataset 1 refers to the experiment involving 60 sequences extracted from Dataset 1, with a total
size of≈ 600.000.000 characters, described in Fig. 5. Speedup Dataset 2 refers to the experiment involving
20 sequences extracted from Dataset 2, with a total size of ≈1,600,000,000 characters, described in Fig. 6

k, while the execution time of step 1 remains approximately the same, the execution
time of step 2 increases with the number of distinct k-mers.Moreover, the performance
deterioration of step 2 is exacerbated by the fact that, in Hadoop, the output of a map
task has to be saved twice on disk. The first time, on the disk of the node executing
the map task, the second time, on the disk of the node executing the following reduce
task.

5 Conclusions and future work

We have presented the first k-mer-based alignment-free sequence comparison par-
adigm that makes good use of the Hadoop framework. As a result, we obtain an
advancement of the state of the art in the important area of sequence analysis, since
we significantly extend the range of problem sizes that can be solved by sequential
alignment-free methods. Moreover, our solution is competitive with respect to them
also in terms of time.

However, our results are only an initial step in assessing how informative, from
a biological point of view, alignment-free methods can be on very large problem
instances, in particular for higher eukaryotes and plant genomes since, as men-
tioned earlier, only partial results are available. Without the support of carefully
engineered HPC alignment-free methods such an essential investigation cannot even
be started.

As for future research directions, we also point out the following. Due to the
large datasets now available, there are very important bioinformatics computational
fundamental tasks that can take full advantage of Hadoop as, for instance, the deter-
mination of k-mer statistics. In fact, this group has work in progress dealing with this
problem. Moreover, although energy consumption issues have not been extensively
investigated in bioinformatics applications, they are certainly of relevance, e.g., [41].
Therefore, it would be of interest to design energy-aware sequence analysis algo-
rithms.
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