Skip to main content

Advertisement

Log in

Energy efficiency of dynamic management of virtual cluster with heterogeneous hardware

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Cloud computing is an essential part of today’s computing world. Continuously increasing amount of computation with varying resource requirements is placed in large data centers. The variation among computing tasks, both in their resource requirements and time of processing, makes it possible to optimize the usage of physical hardware by applying cloud technologies. In this work, we develop a prototype system for load-based management of virtual machines in an OpenStack computing cluster. Our prototype is based on an idea of ‘packing’ idle virtual machines into special park servers optimized for this purpose. We evaluate the method by running real high-energy physics analysis software in an OpenStack test cluster and by simulating the same principle using the Cloudsim simulator software. The results show a clear improvement, 9–48 % , in the total energy efficiency when using our method together with resource overbooking and heterogeneous hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://libvirt.org/.

  2. http://docs.openstack.org/juno/installguide/install/apt/content/ch_overview.html.

  3. http://devstack.org/.

  4. http://en.wikipedia.org/wiki/Oracle_Grid_Engine.

  5. http://docs.openstack.org/developer/devstack/.

  6. http://www.spec.org/power_ssj2008/results/res2011q2/power_ssj2008_20110531_00379.html”.

  7. http://www.spec.org/power_ssj2008/results/res2011q3/power_ssj2008_20110806_00393.html”.

  8. https://www.spec.org/power_ssj2008/.

References

  1. Ahmed A, Sabyasachi AS (2014) Cloud computing simulators: a detailed survey and future direction. In: 2014 IEEE International Advance Computing Conference (IACC), pp 866–872. doi:10.1109/IAdCC.2014.6779436

  2. Antcheva I, Ballintijn M, Bellenot B, Biskup M (2009) Root-a c++ framework for petabyte data storage, statistical analysis and visualization. Comput Phys Commun 180(12):2499–2512

    Article  Google Scholar 

  3. Banga G, Druschel P, Mogul JC (1999) Resource containers: a new facility for resource management in server systems. OSDI 99:45–58

    Google Scholar 

  4. Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer 40:33–37

    Article  Google Scholar 

  5. Beloglazov A, Buyya R (2010) Energy efficient allocation of virtual machines in cloud data centers. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp 577–578. doi:10.1109/CCGRID.2010.45

  6. Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr Comput Pract Exp 24(13):1397–1420. doi:10.1002/cpe.1867

    Article  Google Scholar 

  7. Breitgand D, Dubitzky Z, Epstein A, Glikson A, Shapira I (2013) Sla-aware resource over-commit in an iaas cloud. In: Proceedings of the 8th International Conference on Network and Service Management, CNSM ’12, pp 73–81. International Federation for Information Processing, Laxenburg, Austria. http://dl.acm.org/citation.cfm?id=2499406.2499415

  8. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011) Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Pract Exp 41(1):23–50. doi:10.1002/spe.995

    Article  Google Scholar 

  9. Chung-Hsing H, Poole S (2013) Revisiting server energy proportionality. In: 2013 42nd International Conference on Parallel Processing (ICPP), pp 834–840. doi:10.1109/ICPP.2013.99

  10. Cioara T, Anghel I, Salomie I, Copil G, Moldovan D, Kipp A (2011) Energy aware dynamic resource consolidation algorithm for virtualized service centers based on reinforcement learning. In: 2011 10th International Symposium on Parallel and Distributed Computing (ISPDC), pp 163–169. doi:10.1109/ISPDC.2011.32

  11. Corradi A, Fanelli M, Foschini L (2014) VM consolidation: a real case based on openstack cloud. Future Gen Comput Syst 32(0): 118–127. doi:10.1016/j.future.2012.05.012. http://www.sciencedirect.com/science/article/pii/S0167739X12001082. Special Section: The Management of Cloud Systems, Special Section: Cyber-Physical Society and Special Section: Special Issue on Exploiting Semantic Technologies with Particularization on Linked Data over Grid and Cloud Architectures

  12. Crago S, Dunn K, Eads P, Hochstein L, Kang DI, Kang M, Modium D, Singh K, Suh J, Walters J (2011) Heterogeneous cloud computing. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER), pp 378–385. doi:10.1109/CLUSTER.2011.49

  13. Dabbagh M, Hamdaoui B, Guizani M, Rayes A (2015) Toward energy-efficient cloud computing: Prediction, consolidation, and overcommitment. IEEE Netw 29(2):56–61. doi:10.1109/MNET.2015.7064904

    Article  Google Scholar 

  14. Dinda PA, O’Hallaron DR (2000) Host load prediction using linear models. Cluster Comput 3(4):265–280

    Article  Google Scholar 

  15. Fabozzi F, Jones C, Hegner B, Lista L (2008) Physics analysis tools for the cms experiment at lhc. IEEE Trans Nucl Sci 55:3539–3543

    Article  Google Scholar 

  16. Ghosh R, Naik V (2012) Biting off safely more than you can chew: predictive analytics for resource over-commit in iaas cloud. In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), pp 25–32. doi:10.1109/CLOUD.2012.131

  17. Grzonka D, Kolodziej J, Tao J et al (2015) The analysis of openstack cloud computing platform: Features and performance. J Telecommun Inf Technol 52(3):52–57

    Google Scholar 

  18. Gupta A, Milojicic D, Kalé LV (2012) Optimizing vm placement for hpc in the cloud. In: Proceedings of the 2012 Workshop on Cloud Services, Federation, and the 8th Open Cirrus Summit, FederatedClouds ’12, pp 1–6. ACM, New York, NY, USA. doi:10.1145/2378975.2378977

  19. He S, Guo L, Guo Y, Wu C, Ghanem M, Han R (2012) Elastic application container: a lightweight approach for cloud resource provisioning. In: 2012 IEEE 26th International Conference on Advanced Information Networking and Applications, pp 15–22. doi:10.1109/AINA.2012.74

  20. Hermenier F, Lorca X, Menaud JM, Muller G, Lawall J (2009) Entropy: a consolidation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments VEE ’09, pp 41–50. ACM, New York, NY, USA. doi:10.1145/1508293.1508300

  21. Hosseinimotlagh S, Khunjush F, Samadzadeh R (2015) Seats: smart energy-aware task scheduling in real-time cloud computing. J Supercomput 71(1):45–66. doi:10.1007/s11227-014-1276-9

    Article  Google Scholar 

  22. Intel (2016) Your source for intel product specifications. Tech. rep., Intel Corporation

  23. Jackson K, Bunch C, Sigler E (2015) OpenStack cloud computing cookbook. Packt Publishing Ltd, Birmingham

    Google Scholar 

  24. Kommeri J, Niemi T, Helin O (2012) Energy efficiency of server virtualization. Int J Adv Intell Syst 5(3–4):90–95

    Google Scholar 

  25. von Laszewski G, Diaz J, Wang F, Fox GC (2012) Comparison of multiple cloud frameworks. In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), pp 734–741. doi:10.1109/CLOUD.2012.104

  26. Li B, Li J, Huai J, Wo T, Li Q, Zhong L (2009) Enacloud: an energy-saving application live placement approach for cloud computing environments. In: IEEE International Conference on Cloud Computing, 2009. CLOUD ’09, pp 17–24. doi:10.1109/CLOUD.2009.72

  27. Litvinski O, Gherbi A (2013) Experimental evaluation of openstack compute scheduler. Proc Comput Sci 19:116–123

    Article  Google Scholar 

  28. Medrano Llamas R, Barreiro M, Fernando H, Kucharczyk K, Denis MK, Cinquilli M (2013) Commissioning the cern it agile infrastructure with experiment workloads. In: 20th International Conference on Computing in High Energy and Nuclear Physics

  29. Meinhard H (2012) Virtualization, clouds and iaas at cern. In: Proceedings of the 6th International Workshop on Virtualization Technologies in Distributed Computing Date, VTDC ’12, pp 27–28. ACM, New York, NY, USA. doi:10.1145/2287056.2287064

  30. Meusel R, Blomer J, Buncic P, Ganis G, Heikkilä SS (2015) Recent developments in the cernvm-file system server backend. J Phys Conf Ser 608(1):012,031

    Article  Google Scholar 

  31. Nathuji R, Schwan K (2007) Virtualpower: coordinated power management in virtualized enterprise systems. SIGOPS Oper Syst Rev 41(6):265–278. doi:10.1145/1323293.1294287

    Article  Google Scholar 

  32. Niemi T, Hameri AP (2012) Memory-based scheduling of scientific computing clusters. J Supercomput 61(3):520–544

    Article  Google Scholar 

  33. Ou Z, Zhuang H, Nurminen JK, Ylä-Jääski A, Hui P (2012) Exploiting hardware heterogeneity within the same instance type of amazon ec2. In: Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Ccomputing, HotCloud’12, pp 4–4. USENIX Association, Berkeley, CA, USA. http://dl.acm.org/citation.cfm?id=2342763.2342767

  34. Pahlavan A, Momtazpour M, Goudarzi M (2014) Power reduction in hpc data centers: a joint server placement and chassis consolidation approach. J Supercomput 70(2):845–879. doi:10.1007/s11227-014-1265-z

    Article  Google Scholar 

  35. Peng J, Zhang X, Lei Z, Zhang B, Zhang W, Li Q (2009) Comparison of several cloud computing platforms. In: 2009 Second International Symposium on Information Science and Engineering, pp 23–27. doi:10.1109/ISISE.2009.94

  36. Ponce S, Hersch RD (2004) Parallelization and scheduling of data intensive particle physics analysis jobs on clusters of pcs. In: CD-ROM/Abstracts Proceedings 18th International Parallel and Distributed Processing Symposium (IPDPS 2004), 26-30 April 2004, Santa Fe, New Mexico, USA. doi:10.1109/IPDPS.2004.1303280

  37. Ross SM (1996) Stochastic Processes, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  38. Sato K, Samejima M, Komoda N (2013) Dynamic optimization of virtual machine placement by resource usage prediction. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN), pp 86–91. doi:10.1109/INDIN.2013.6622863

  39. Sevalnev M, Aalto S, Kommeri J, Niemi T (2012) Using queuing theory for controlling the number of computing servers. In: ICGREEN 2012 (Third International Conference on Green IT Solutions (2012)

  40. Sharifi M, Salimi H, Najafzadeh M (2012) Power-efficient distributed scheduling of virtual machines using workload-aware consolidation techniques. J Supercomput 61(1):46–66. doi:10.1007/s11227-011-0658-5

    Article  Google Scholar 

  41. Srikantaiah S, Kansal A, Zhao F (2008) Energy aware consolidation for cloud computing. In: Proceedings of the 2008 Conference on Power Aware Computing and Systems, HotPower’08, p 10. USENIX Association, Berkeley, CA, USA. http://dl.acm.org/citation.cfm?id=1855610.1855620

  42. Takahiro H, Hidemoto N, Satoshi I, Satoshi S (2012) Reactive cloud: consolidating virtual machines with postcopy live migration. Inf Media Technol 7(2):614–626

    Google Scholar 

  43. Takouna I, Meinel C (2014) Coordinating vms’ memory demand heterogeneity and memory dvfs for energy-efficient vms consolidation. In: IEEE and Cyber, Physical and Social Computing(CPSCom), IEEE Internet of Things (iThings), 2014 IEEE International Conference on, and Green Computing and Communications (GreenCom), pp 478–485. doi:10.1109/iThings.2014.85

  44. Tomás L, Tordsson J (2013) Improving cloud infrastructure utilization through overbooking. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference, CAC ’13, pp 5:1–5:10. ACM, New York, NY, USA. doi:10.1145/2494621.2494627

  45. Verma A, Ahuja P, Neogi A (2008) Power-aware dynamic placement of hpc applications. In: Proceedings of the 22nd Annual International Conference on Supercomputing, ICS ’08ACM, New York, NY, USA, pp 175–184

  46. Wang X, Liu X, Fan L, Jia X (2013) A decentralized virtual machine migration approach of data centers for cloud computing. Math Probl Eng 10:878542. doi:10.1155/2013/878542

  47. Wen X, Gu G, Li Q, Gao Y, Zhang X (2012) Comparison of open-source cloud management platforms: Openstack and opennebula. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp 2457–2461. doi:10.1109/FSKD.2012.6234218

  48. Wuhib F, Stadler R, Lindgren H (2012) Dynamic resource allocation with management objective: implementation for an openstack cloud. In: 2012 8th International Conference and 2012 Workshop on Systems Virtualiztion Management (svm) Network and service management (cnsm), pp 309–315

  49. Younge A, Fox G (2014) Advanced virtualization techniques for high performance cloud cyberinfrastructure. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp 583–586. doi:10.1109/CCGrid.2014.93

Download references

Acknowledgments

This paper has received funding from the European Union’s Horizon 2020 research and innovation program 2014–2018 under Grant Agreement No. 644866.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Kommeri.

Additional information

This paper reflects only the authors’ views and the European Commission is not responsible for any use that may be made of the information it contains.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kommeri, J., Niemi, T. & Nurminen, J.K. Energy efficiency of dynamic management of virtual cluster with heterogeneous hardware. J Supercomput 73, 1978–2000 (2017). https://doi.org/10.1007/s11227-016-1899-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1899-0

Keywords

Navigation