Abstract
Context information can be an important factor of user behavior modeling and various context recognition recommendations. However, state-of-the-art context modeling methods cannot deal with contexts of other dimensions such as those of users and items and cannot extract special semantics. On the other hand, some tasks for predicting multidimensional relationships can be used to recommend context recognition, but there is a problem with the generation recommendations based on a variety of context information. In this paper, we propose MRTensorCube, which is a large-scale data cube calculation based on distributed parallel computing using MapReduce computation framework and supports efficient context recognition. The basic idea of MRTensorCube is the reduction of continuous data combined partial filter and slice when calculating using a four-way algorithm. From the experimental results, it is clear that MRTensor is superior to all other algorithms.






Similar content being viewed by others
References
Sangkeun L, Juno C, Sang-goo L (2011) Survey and trend analysis of context-aware systems. Information 14:527–548
Tejeda-L Alvaro, Carlos P, Eduardo P, Rosa S, Herrera-V Enrique (2014) A quality based recommender system to disseminate information in a university digital library. Inf Sci 261:52–69. doi:10.1016/j.ins.2013.10.036
Bill S, Norman A, Roy W (1994) Context-aware computing applications. Workshop Mob Comput Syst Appl 1:85–90. doi:10.1109/MCSA.1994.512740
Wookey L, Carson K, James J (2011) Mobile web navigation in digital ecosystems using rooted directed trees. IEEE Trans Ind Electron 58:2154–2162. doi:10.1109/TIE.2010.2050292
Yehuda K, Robert B, Chris V (2009) Matrix factorization techniques for recommender systems. Computer 42:30–37. doi:10.1109/MC.2009.263
Gediminas A, Ramesh S, Shahana S, Alexander T (2005) Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans Inf Syst 23:103–145. doi:10.1145/1055709.1055714
Alexandros K, Xavier A, Linas B, Nuria O (2010) Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: ACM Conference on RecSys’10, pp 79–86. doi:10.1145/1864708.1864727
Steffen R, Zeno G, Christoph F, Lars ST (2011) Fast context-aware recommendations with factorization machines. ACM SIGIR Conference on Research and Development in Information Retrieval, pp 635–644: doi:10.1145/2009916.2010002
Steffen R, Leandro BM, Alexandros N, Lars ST (2009) Learning optimal ranking with tensor factorization for tag recommendation. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pp 727–736. doi:10.1145/1557019.1557100
Suan L, Jinho K (2015) Efficient level-based top-down data cube computation using mapreduce. Lect Notes Comput SC 9260:1–19. doi:10.1007/978-3-662-47804-2_1
Suan L, Jinho K (2016) Technology for electronic document management and virtual storage system in cloud environments. J IT Archit 13:179–190
Suan L, Sunhwa J, Jinho K (2015) MRDataCube: Data cube computation using map reduce. In: BigComp2015, pp 95–102. doi:10.1109/35021BIGCOMP.2015.7072817
Jim G, Surajit C, Adam B et al (1997) Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min Knowl Discov 1:29–53. doi:10.1023/A:1009726021843
Sameet A, Rakesh A, Prasad D et al (1996) On the computation of multidimensional aggregates. In: Proceedings International Conference on Very Large Data Bases. pp 506–521
Frank D, Todd E, Andrew RC (2006) The cgmCUBE project: optimizing parallel data cube generation for ROLAP. Distrib Parallel Database 19:29–62. doi:10.1007/s10619-006-6575-6
Suan L, Jinho K (2011) Efficient Distributed parallel top-down computation of data cube using MapReduce. Lect Notes Comput SC 7448:168–179. doi:10.1007/978-3-642-32584-7_14
Zipf’s law. http://en.wikipedia.org/wiki/Zipf’s_law
Acknowledgements
This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (B0126-16-1041, Auto-Generated Media Service Technologies based on Semantic Relationship of Contents for Self-Growth Social Broadcasting).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kim, S., Lee, S., Kim, J. et al. MRTensorCube: tensor factorization with data reduction for context-aware recommendations. J Supercomput 76, 7847–7857 (2020). https://doi.org/10.1007/s11227-017-2002-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-017-2002-1