Abstract
Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking.








Similar content being viewed by others
References
Ghosh N, Ghosh S, Das S (2015) SelCSP: A framework to facilitate selection of cloud service providers. IEEE Trans Cloud 3(1):66–79. doi:10.1109/TCC.2014.2328578
Sosinsky B (2010) Cloud computing bible. Wiley, New York
Mell P, Grance T (2011) The NIST definition of cloud computing. NIST Spec Publ 145:7. doi:10.1136/emj.2010.096966
Garg S, Versteeg S, Buyya R (2013) A framework for ranking of cloud computing services. Future Gener Comput Syst 29(4):1012–1023. doi:10.1016/j.future.2012.06.006
Ding S, Xia CY, Le Zhou K et al (2014) Decision support for personalized cloud service selection through multi-attribute trustworthiness evaluation. PLoS One. doi:10.1371/journal.pone.0097762
Thampi S, Bhargava B, Atrey P (2013) Managing trust in cyberspace. Chapman and Hall/CRC
Ding S, Yang S, Zhang Y et al (2014) Combining QoS prediction and customer satisfaction estimation to solve cloud service trustworthiness evaluation problems. Knowl Based Syst 56:216–225. doi:10.1016/j.knosys.2013.11.014
Tang M, Dai X, Liu J, Chen J (2016) Towards a trust evaluation middleware for cloud service selection. Future Gener Comput Syst. doi:10.1016/j.future.2016.01.009
Noor TH, Sheng QZ, Yao L et al (2015) CloudArmor : supporting reputation-based trust management for cloud services. IEEE Trans Parallel Distrib Syst 27:367–380
Tang M, Dai X, Liu J, Chen J (2016) Towards a trust evaluation middleware for cloud service selection. Future Gener Comput Syst. doi:10.1016/j.future.2016.01.009
Marudhadevi D, Dhatchayani VN, Sriram VSS (2014) A Trust evaluation model for cloud computing using service level agreement. doi:10.1093/comjnl/bxu129
Qu L (2016) Credible service selection in cloud environments. Doctoral dissertation, Macquarie University
Liang H, Wang J, Yao Y (2007) User-oriented feature selection for machine learning. Comput J 50(4):421–434. doi:10.1093/comjnl/bxm012
Ben Saied Y, Olivereau A, Zeghlache D, Laurent M (2013) Trust management system design for the Internet of Things: a context-aware and multi-service approach. Comput Secur 39:351–365. doi:10.1016/j.cose.2013.09.001
Somu N, Raman MRG, Kirthivasan K, Sriram VSS (2016) Hypergraph based feature selection technique for medical diagnosis. J Med Syst 40:239. doi:10.1007/s10916-016-0600-8
CSMIC (2011) Cloud Service Measurement Index Consortium. “Service Measurement Index Version 1.0.”
Somu N, Kirthivasan K, Shankar SS (2017) A computational model for ranking cloud service providers using hypergraph based techniques. Future Gener Comput Syst 68:14–30. doi:10.1016/j.future.2016.08.014
Costa P (2013) Evaluating cloud services using multicriteria decision analysis M.S. Dissertation. Instituto Superior Técnico
IEEE Standards Association and Others (1998) IEEE STD 1061–1998, IEEE standard for a software quality metrics methodology
Cloud Armor project. http://cs.adelaide.edu.au/~cloudarmor/home.html. Accessed 15 Nov 2016
Moore D (1976) Chi-square tests
Øhrn A (2000) Rosetta technical reference manual. Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway
Somu N, Kirthivasan K, Sriram VSS (2016) A Computational model for ranking cloud service providers using hypergraph based techniques. Future Gener Comput Syst. doi:10.1016/j.future.2016.08.014
Sun L, Dong H, Hussain FK et al (2014) Cloud service selection: state-of-the-art and future research directions. J Netw Comput Appl 45:134–150. doi:10.1016/j.jnca.2014.07.019
Sengupta N, Sen J, Sil J, Saha M (2013) Designing of on line intrusion detection system using rough set theory and Q-learning algorithm. Neurocomputing 111:161–168. doi:10.1016/j.neucom.2012.12.023
Swiniarski RW, Skowron A (2003) Rough set methods in feature selection and recognition. Pattern Recognit Lett 24:833–849. doi:10.1016/S0167-8655(02)00196-4
Jensen R, Shen Q (2007) Fuzzy-rough sets assisted attribute selection. IEEE Trans Fuzzy Syst 15(1):73–89. doi:10.1109/TFUZZ.2006.889761
Wang X, Yang J, Teng X, Xia W, Jensen R (2007) Feature selection based on rough sets and particle swarm optimization. Pattern Recognit Lett 28:459–471. doi:10.1016/j.patrec.2006.09.003
Jiang F, Sui Y, Zhou L (2015) A relative decision entropy-based feature selection approach. Pattern Recognit 48:2151–2163. doi:10.1016/j.patcog.2015.01.023
Inbarani HH, Bagyamathi M, Azar AT (2015) A novel hybrid feature selection method based on rough set and improved harmony search. Neural Comput Appl 26:1859–1880. doi:10.1007/s00521-015-1840-0
Inbarani HH, Azar AT, Jothi G (2014) Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Comput Methods Programs Biomed 113:175–185. doi:10.1016/j.cmpb.2013.10.007
Pawlak Z, Grzymala-Busse J, Slowinski R (1995) Rough sets. Communications 38(11):88–95. doi:10.1145/219717.219791
Pawlak Z, Skowron A (2007) Rudiments of rough sets. Inf Sci (Ny) 177(1):3–27. doi:10.1016/j.ins.2006.06.003
Gauthama Raman MR, Kirthivasan K, Sriram VSS (2017) Development of rough set-hypergraph technique for key feature identification in intrusion detection systems. Comput Electr Eng. doi:10.1016/j.compeleceng.2017.01.006
Mitra P, Murthy C, Pal S (2002) Unsupervised feature selection using feature similarity. IEEE Trans pattern Anal Mach Intell 24(3):301–312. doi:10.1109/34.990133
Chen H, Yang B, Liu J, Liu D (2011) A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst Appl 38(7):9014–9022. doi:10.1016/j.eswa.2011.01.120
Abraham A, Falc R, Bello R (2009) Rough set theory: a true landmark in data analysis Rough set theory: a true landmark in data analysis, Vol 174. Springer Science & Business Media
Deo N (2016) Graph theory with applications to engineering and computer science. Courier Dover Publications
Berge C, Minieka E (1973) Graphs and hypergraphs, Vol 7. North-Holland publishing company, Amsterdam
Raman MRG, Somu N, Kirthivasan K, Sriram VSS (2017) A hypergraph and arithmetic residue-based probabilistic neural network for classification in intrusion detection systems. Neural Netw. doi:10.1016/j.neunet.2017.01.012
Kannan K, Kanna B, Aravindan C (2010) Root mean square filter for noisy images based on hyper graph model. Image Vis Comput
Bretto A, Gillibert L (2005) Hypergraph-based image representation. International Workshop on Graph-Based Representations in Pattern Recognition. Springer, Berlin, Heidelberg, pp 1–11. doi:10.1007/978-3-540-31988-7_1
Kavvadias DJ, Stavropoulos EC (2005) An efficient algorithm for the transversal hypergraph generation. J Graph Algorithms Appl 9:239–264
Eiter T, Gottlob G (1995) Identifying the minimal transversals of a hypergraph and related problems. SIAM J Comput
Dhatchayani V, Sriram V (2014) Trust aware identity management for cloud computing. Int J Inf Commun Technol 6(3–4):369–380. doi:10.1504/IJICT.2014.063220
Hennan R, Roane J (2011) Security monitoring tool for computer network. US Pat. 7,904,456
Barth W (2008) Nagios: system and network monitoring. No Starch Press
Aceto G, Botta A, De Donato W, Pescapè A (2013) Cloud monitoring: a survey. Comput Netw 57:2093–2115. doi:10.1016/j.comnet.2013.04.001
Deogun JS, Choubey SK, Raghavan VV, Sever H (1998) Feature selection and effective classifiers. J Am Soc Inf Sci 49:423–434
Hu Z (2012) Decision rule induction for service sector using data mining: a rough set theory approach M.S. Dissertation. The University of Texas At El Paso
Guo J-Y (2003) Rough set-based approach to data mining. IEEE, Los Alamitos
Jensen R, Shen Q (2003) Finding rough set reducts with ant colony optimization. In: Proceedings, 2003 UK Work, pp 15–22
Raman M, Kannan K, Pal S (2016) Rough set-hypergraph-based feature selection approach for intrusion detection systems. Def Sci J 66(6):612. doi:10.14429/dsj.66.10802
Nina F (2007) On applications of rough sets theory to knowledge discovery Doctoral dissertation, University of Puerto Rico Mayagüez Campus
Gheyas I, Smith L (2010) Feature subset selection in large dimensionality domains. Pattern Recognit 43(1):5–13. doi:10.1016/j.patcog.2009.06.009
Velayutham C, Thangavel K (2011) Unsupervised quick reduct algorithm using rough set theory. J Electron Sci Technol 9:193–201
Chen Y, Zhu Q, Xu H (2015) Finding rough set reducts with fish swarm algorithm. Knowl Based Syst 81:22–29. doi:10.1016/j.knosys.2015.02.002
Witten I, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann
Acknowledgements
The first and third author thanks the Department of Science and Technology, New Delhi, India, for INSPIRE Fellowship (Grant No: DST/INSPIRE Fellowship/2013/963) and Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (SR/FST/ETI-349/2013) for their financial support. The second author thanks the Department of Science and Technology, New Delhi, India—Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions Government of India (SR/FST/MSI-107/2015) for their financial support.
Author information
Authors and Affiliations
Corresponding author
Glossary
Glossary
Abstract
- CSPs:
-
Cloud service providers
- CUs:
-
Cloud users
- QoS:
-
Quality of service
- TMPs:
-
Trust measure parameters
- RSHT:
-
Rough set-based hypergraph technique
- HGCM:
-
Hypergraph-based computational model
Introduction
- XaaS:
-
Something as a Service
- RST:
-
Rough set theory
- SQR:
-
Supervised quick reduct
- QRR:
-
Quick relative reduct
- CSMIC–SMI:
-
Cloud Services Measurement Initiative Consortium–Service Measurement Index
- IEEE:
-
Institute of Electrical and Electronics Engineers
TrustCom and RSHT for the identification of trustworthy cloud service providers
- CSRD:
-
Cloud service registry and discovery
- TCE:
-
Trust computation engine
- SLA:
-
Service-level agreement
- IdM:
-
Identity management
Rough set-hypergraph-based trust measure parameter selection technique
- \(D_T\) :
-
Decision table
- \(S= \left\{ {S_1, S_2, \ldots , S_n }\right\} \) :
-
Samples in the decision table
- \(\hbox {CA}= \left\{ {\hbox {CA}_1, \hbox {CA}_2, \ldots , \hbox {CA}_m }\right\} \) :
-
Set of conditional attributes
- \(\hbox {DA}\) :
-
Decisional attribute
- \(H \leftarrow \{\hbox {TMP}, \hbox {TMPR}^{\prime }\}\) :
-
Hypergraph constructed with TMPs as vertices and TMPR\(^{\prime }\) as hyperedges
- \(TMP \leftarrow \{\hbox {TMP}_1, \hbox {TMP}_2, \ldots , \hbox {TMP}_n \}\) :
-
TMPs in a reduct
- \(\hbox {TMPR}^{{\prime }}\leftarrow \left\{ {\hbox {TMPR}_1^{\prime }, \hbox {TMPR}_2^{\prime }, \ldots , \hbox {TMPR}_t^{\prime } }\right\} \) :
-
Reduct obtained from RST
- \(\gamma \hbox {TMPR}^{{\prime }}\left( {\hbox {DA}}\right) \) :
-
The dependency of \(\hbox {TMPR}^{{\prime }}\) with \(\hbox {DA}\)
- \(\gamma \hbox {CA}\left( {\hbox {DA}}\right) \) :
-
The dependency of \(\hbox {CA}\) with \(\hbox {DA}\)
- \(H_T \left\{ {\hbox {TMP}}\right\} \) :
-
Sets that satisfy minimal transversal property of hypergraph
- \(H_\mathrm{EXT} \left\{ {\hbox {TMP}}\right\} \) :
-
Sets that satisfy vertex linearity property of hypergraph
- \(H_\mathrm{DIS} \left\{ {\hbox {TMP}}\right\} \) :
-
Sets that neither satisfy minimal transversal nor vertex linearity property
- k :
-
Number of elements in \(\hbox {TMPR}_1^{\prime }\)
- r :
-
Number of reducts
- \(\hbox {TMP}_\mathrm{Opt}\) :
-
Optimal TMP subset
- KPIs:
-
Key performance indicators
Experimental analysis
- \(T_n\) :
-
Number of features
- \(S_n\) :
-
Number of samples
- \(H_n\) :
-
Number of elements in hyperedges
Rights and permissions
About this article
Cite this article
Somu, N., Kirthivasan, K. & Shankar Sriram, V.S. A rough set-based hypergraph trust measure parameter selection technique for cloud service selection. J Supercomput 73, 4535–4559 (2017). https://doi.org/10.1007/s11227-017-2032-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-017-2032-8