Skip to main content
Log in

A parallel Self Mesh-Adaptive N-body method based on approximate inverses

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A new parallel Self Mesh-Adaptive N-body method based on approximate inverses is proposed. The scheme is a three-dimensional Cartesian-based method that solves the Poisson equation directly in physical space, using modified multipole expansion formulas for the boundary conditions. Moreover, adaptive-mesh techniques are utilized to form a class of separate smaller n-body problems that can be solved in parallel and increase the total resolution of the system. The solution method is based on multigrid method in conjunction with the symmetric factored approximate sparse inverse matrix as smoother. The design of the parallel Self Mesh-Adaptive method along with discussion on implementation issues for shared memory computer systems is presented. The new parallel method is evaluated through a series of benchmark simulations using N-body models of isolated galaxies or galaxies interacting with dwarf companions. Furthermore, numerical results on the performance and the speedups of the scheme are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aarseth SJ (2010) Gravitational N-body simulations: tools and algorithms. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Barnes J, Hut P (1986) A hierarchical o(nlogn) force-calculation algorithm. Nature 324:446–449

    Article  Google Scholar 

  3. Binney J, Tremaine S (2008) Galactic dynamics, 2nd edn. Princeton University Press, Princeton

    MATH  Google Scholar 

  4. Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial, 2nd edn. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  5. Bryan GL, Norman ML, O’Shea BW, Abel T, Wise JH, Turk MJ, Reynolds DR, Collins DC, Wang P, Skillman SW, Smith B, Harkness RP, Bordner J, Kim JH, Kuhlen M, Xu H, Goldbaum N, Hummels C, Kritsuk AG, Tasker E, Skory S, Simpson CM, Hahn O, Oishi JS, So GC, Zhao F, Cen R, Li Y, Collaboration TE (2014) Enzo: an adaptive mesh refinement code for astrophysics. Astrophys J Suppl Ser 211(2):19

    Article  Google Scholar 

  6. Chapman B, Jost G, Pas RVD (2007) Using OpenMP: portable shared memory parallel programming (scientific and engineering computation). The MIT Press, Cambridge

    Google Scholar 

  7. Dehnen W (2000) A very fast and momentum-conserving tree code. J Comput Phys 536:L39–L42

    Google Scholar 

  8. Greengard LF, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348

    Article  MATH  MathSciNet  Google Scholar 

  9. Haelterman R, Heule JVDV (2009) Non-stationary two-stage relaxation based on the principle of aggregation multigrid. In: Deconinck H, Dick E (eds.) Computational Fluid Dynamics 2006, 4th International Conference on Computational Fluid Dynamics. Springer, Berlin, pp 243–248

  10. Harnois-Draps J, Pen UL, Iliev IT, Merz H, Emberson JD, Desjacques V (2013) High-performance p3m n-body code: cubep3m. Mon Not R Astron Soc 436(1):540

    Article  Google Scholar 

  11. Hockney RW, Eastwood JW (1988) Computer simulation using particles. CRC Press, Taylor and Francis, Inc., Bristol

    Book  MATH  Google Scholar 

  12. Intel Math Kernel Library (2009) Reference manual. Intel Corporation, Santa Clara. ISBN 630813-054US

  13. Kim JH, Abel T, Agertz O, Bryan GL, Ceverino D, Christensen C, Conroy C, Dekel A, Gnedin NY, Goldbaum NJ, Guedes J, Hahn O, Hobbs A, Hopkins PF, Hummels CB, Iannuzzi F, Keres D, Klypin A, Kravtsov AV, Krumholz MR, Kuhlen M, Leitner SN, Madau P, Mayer L, Moody CE, Nagamine K, Norman ML, Onorbe J, O’Shea BW, Pillepich A, Primack JR, Quinn T, Read JI, Robertson BE, Rocha M, Rudd DH, Shen S, Smith BD, Szalay AS, Teyssier R, Thompson R, Todoroki K, Turk MJ, Wadsley JW, Wise JH, Zolotov A, for the AGORA Collaboration29 (2014) The agora high-resolution galaxy simulations comparison project. Astrophys J Suppl Ser 210(1):14

  14. Kravtsov AV, Klypin AA, Khokhlov AM (1997) Adaptive refinement tree—a new high-resolution N-body code for cosmological simulations. Astrophys J Suppl Ser 111:73–94

    Article  Google Scholar 

  15. Kyziropoulos PE (2017) A study of computational methods for parallel simulation of the gravitational n-body problem. Ph.D. Thesis, Department of Electrical and Computer Engineering, Democritus University of Thrace (in preparation)

  16. Kyziropoulos PE, Efthymiopoulos C, Gravvanis GA, Patsis PP (2016) Structures induced by companions in galactic discs. MNRAS 463:2210–2228

    Article  Google Scholar 

  17. O’Shea BW, Bryan G, Bordner J, Norman ML, Abel T, Harkness R, Kritsuk A (2005) Introducing enzo, an amr cosmology application. Lecture notes in computational science and engineering, vol 41. Springer, Berlin

    MATH  Google Scholar 

  18. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Sellwood JA (2014) GALAXY package for N-body simulation. ArXiv e-prints

  20. Springel V (2005) The cosmological simulation code gadget-2. Mon Not R Astron Soc 364:1105–1134

    Article  Google Scholar 

  21. Teuben PJ (1995) The stellar dynamics toolbox nemo. In: Astronomical Data Analysis Software and Systems IV, ASP Conference Series, vol 77, p 398

  22. Teyssier R (2002) Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron Astrophys 385:337–364

    Article  Google Scholar 

  23. Trottenberg U, Oosterlee CW, Schuller A (2000) Multigrid. Academic press, Elsevier, New York, Amsterdam

    MATH  Google Scholar 

  24. Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys Rev 159(1):98–103

    Article  Google Scholar 

  25. Villumsen J (1982) Simulations of galaxy mergers. Mon Not R Astron Soc 199:493–516

    Article  Google Scholar 

  26. Wesseling P (1982) Theoretical and practical aspects of a multigrid method. SIAM J Sci Stat Comput 3(4):387–407

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Greek Research and Technology Network (GRNET) for the provision of the National HPC facility ARIS under Project PR002040-ScaleSciComp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gravvanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyziropoulos, P.E., Filelis-Papadopoulos, C.K., Gravvanis, G.A. et al. A parallel Self Mesh-Adaptive N-body method based on approximate inverses. J Supercomput 73, 5197–5220 (2017). https://doi.org/10.1007/s11227-017-2078-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2078-7

Keywords