Skip to main content
Log in

Loss-aware routing algorithm for photonic networks on chip

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

An Erratum to this article was published on 11 July 2017

This article has been updated

Abstract

Photonic network on chip was introduced as an efficient communication platform to overcome the existing challenges in traditional networks on chip. Optical networks provide high bandwidth and low power dissipation infrastructure. Insertion loss is one of the important parameters in photonic networks on chip. In this study, we propose a solution in routing algorithm level in order to reduce insertion loss in photonic network on chip, by passing packets through paths with lower number of optical elements. Simulation results reveal that a novel approach in the routing level decreases insertion loss as much as possible, energy consumption and optical power budget. Our proposed routing has 29.05% less insertion loss under all2all traffic pattern for blocking torus topology, and it has about 12.37% less insertion loss for TorusNX topology in comparison with primary dimension-ordered routing. Proposed routing algorithm increases both the network bandwidth and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

  • 11 July 2017

    An erratum to this article has been published.

References

  1. Chan J, Hendry G, Bergman K, Carloni LP (2011) Physical-layer modeling and system-level design of chip-scale photonic interconnection networks. IEEE Trans Comput-Aided Des Integr Circuits Syst 30:1507–1520. doi:10.1109/TCAD.2011.2157157

    Article  Google Scholar 

  2. Bergman K (2010) Chip scale photonic interconnects for energy-performance optimized computing. In: 23rd Annual Meeting of the IEEE Photonics Society, 2010, pp 626–627.doi:10.1109/PHOTONICS.2010.5699043

  3. Chen G et al (2005) Predictions of CMOS compatible on- chip optical interconnect. In: ACM/IEEE International Workshop System Levelinterconnect Prediction. San Francisco, USA 40:434–446. doi:10.1016/j.vlsi.2006.10.001

    Google Scholar 

  4. Cadien KC et al (2005) Challenges for on-chip optical interconnects. SPIE 5730, Optoelectronic Integration Silicon II, pp 133–143, Mar 14. doi:10.1117/12/591163

  5. Stucchi M et al (2011) Benchmarking on-chip optical against electrical interconnect for high-performance applications. IEEE IITC/MAM, Dresden, Germany, pp 1–3, May.doi:10.1109/IITC.2011.5940286

  6. Huaxi Gu JX, Wang Zheng (2008) ODOR: a microresonator-based High-performance low-cost router for optical networks-on-chip. IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp 203–208. doi:10.1145/1450135.1450181

  7. Hendry G, Robinson E, Gleyzer V, Chan J, Carloni LP, Bliss N et al (2011) Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors. J. Parallel Distrib. Comput. 71:641–650. doi:10.1016/j.jpdc.2010.09.009

    Article  Google Scholar 

  8. Nikdast M, Xu J, Wu X, Zhang W, Ye Y, Wang X, Wang Z, Wang Zh (2014) Systematic analysis of crosstalk noise in folded-torus-based optical networks-on-chip. IEEE Trans. Comput-Aided Des Integr Circuits Syst 33:437–450. doi:10.1109/TCAD.2013.2288676

    Article  Google Scholar 

  9. Guo P, Hou W, Guo L (2016) Designs of low insertion loss optical router and reliable routing for 3D optical network-on-chip. Res Pap Spec Focus Opt Netw 59:102302. doi:10.1007/s11432-016-0326-1

    Google Scholar 

  10. Ji R, Xu J, Yang L (2013) Five-port optical router based on microring switches for photonic networks-on-chip. IEEE Photon Technol Lett 25:492–495. doi:10.1109/LPT.2013.2243427

    Article  Google Scholar 

  11. Chan J, Hendry G, Biberman A, Bergman K (2010) Architectural exploration of chip-scale photonic interconnection network designs using physical- layer analysis. Lightwave Technol 28:1305–1315. doi:10.1109/JLT.2010.2044231

    Article  Google Scholar 

  12. Chang Z, Tang J, Jin Y (2009) An insertion loss balance aware routing scheme in photonic network on chip. Commun Signal Process, ICICS. doi:10.1109/ICICS.2009.5397522

  13. Shacham A, Bergman K, Carloni LP (2008) Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput 57:1246–1260. doi:10.1109/TC.2008.78

    Article  MathSciNet  Google Scholar 

  14. Ding D, Zhang Y, Huang H, Chen RT, Pan DZ (2009) O-router: an optical routing framework for low power on-chip silicon nano-photonic integration. In: Design Automation Conference. doi:10.1145/1629911.1629983

  15. Kirman N, Martinez JF (2010) A Power-efficient all-optical on-chip interconnect using wavelength-based oblivious routing. In: Conference Paper in ACM SIGARCH Computer Architecture News 45(3):15–28. doi:10.1145/1736020.1736024

    Google Scholar 

  16. Meyer M, Okuyama Y, Abdallah AB (2016) A power estimation method for mesh-based photonic NOC routing algorithms. In: Computing and Networking (CANDAR). doi:10.1109/CANDAR.2016.0084

  17. Wu JC (2012) Architectural exploration and design methodologies of photonic interconnection networks. Doctor of Philosophy Dissertations Electrical Engineering, Columbia University

  18. Shacham A, Hendry G, Bergman K, Carloni LP (2007) On the design of a photonic network-on- chip. In: 1st International Symposium Networks-on-Chip, pp 53–64

  19. Gu H, Hung KM, Xu J, Zhang W (2009) A low-power low-cost optical router for optical networks-on-chip in multiprocessor system-on-chip. In: IEEE Computer Society Annual Symposium on VLSI pp 19–24. doi:10.1109/ISVLSI.2009.19

  20. Hatamirad M et al (2012) Loss aware router design approach for dimension-ordered routing algorithms in photonic networks-on-chip. IJCSI Int J Comput Sci 9:337–345

    Google Scholar 

  21. Shabani H et al (2013) Parallel-XY: a novel loss-aware non-blocking photonic router for silicon nano-photonic networks-on-chip. J Comput Theor Nanosci 10(6):1510–1514. doi:10.1166/jctn.2013.2881

    Article  Google Scholar 

  22. Asadi B et al (2016) A routing algorithm for reducing optical loss in photonic networks-on-chip. A. Photon Netw Commun, pp 1–11. doi:10.1007/s11107-016-0656-x

  23. Xie Y, Nikdast M, Xu J, Zhang W, Li Q, Wu X, Ye Y, Wang X, Liu W (2010) Crosstalk noise and bit error rate analysis for optical Network-on-Chip. DAC’10 Anaheim, California, USA, pp 657–660

  24. Yang LLaY (2010) Energy-Aware Routing in Hybrid Optical Network-on-Chip for Future Multi-Processor System-on-Chip. In: ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), 2010, pp 1–9. doi:10.1145/1872007.1872029

  25. Bergman K, Carloni L, Biberman A, Chan J, Hendry G (2014) Photonic network-on-chip design. Series: integrated circuits and systems, Springer, New York 68. doi:10.1007/978-1-4419-9335-9

  26. Shacham A, Lee BG, Biberman A, Bergman K, Carloni LP (2007) Photonic NoC for DMA Communications in Chip Multiprocessors. In: 15th Annual IEEE Symposium on High- Performance Interconnects, HOTI 2007, pp 29–38

  27. Chan J, Hendry G, Biberman A, Bergman K, Carloni LP (2010) Phoenixsim: a simulator for physical-layer analysis of chip-scale photonic interconnection networks. In: Design, Automaton and Test in Europe Conference and Exhibition (Date), pp 691–696

  28. www.omnetpp.org

  29. Xia F, Sekaric L, Vlasov Y (2006) Ultracompact optical buffers on a silicon chip. Nat Photon 1:65–71. doi:10.1038/nphoton.2006.42

    Article  Google Scholar 

  30. Bogaerts W, Dumon P, Thourhout DV, Baets R (2007) Low-loss, lowcross- talk crossings for silicon-on-insulator nanophotonic waveguides. OSA Opt. Lett. 32(19):2801–2803. doi:10.1364//OL.32.002801

    Article  Google Scholar 

  31. Lee BG, Biberman A, Dong P, Lipson M, Bergman K (2008) All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photon Technol Lett 20(10):767–769. doi:10.1109/LPT.2008.921100

    Article  Google Scholar 

  32. Hendry G et al (2010) Circuit-switched memory access in photonic interconnection networks for high performance embedded computing. In: International Conference for, High Performance Computing, Networking, Storage and Analysis (sc), 2010, pp 1–12. doi:10.1109/SC.2010.13

  33. Small BA, Lee BG, Bergman K, Xu Q, Lipson M (2007) Multiple-wavelength integrated photonic networks based on microring resonator devices. J Opt Netw 6:112–120. doi:10.1364/JON.6.000112

    Article  Google Scholar 

  34. Beausoleil RG, Kuekes PJ, Snider GS, Shih- yuan W, Williams RS (2008) Nanoelectronic and nanophotonic interconnect. Proc IEEE 96:230–247. doi:10.1109/JPROC.2007.911057

    Article  Google Scholar 

  35. Biberman A et al (2011) Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors. J Emerg Technol Comput Syst 7:1–25. doi:10.1145/1970406.1970409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Vahidifar.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s11227-017-2108-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidifar, S., Reshadi, M. Loss-aware routing algorithm for photonic networks on chip. J Supercomput 73, 5496–5514 (2017). https://doi.org/10.1007/s11227-017-2096-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2096-5

Keywords

Navigation