Skip to main content
Log in

A comprehensive evaluation of availability and operational cost for a virtualized server system using stochastic reward nets

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

A Correction to this article was published on 18 May 2018

This article has been updated

Abstract

Virtualized server systems, as a major underlying element in high-performance computing systems, require further studies on many aspects of dependability. Among the significant factors, the availability measures are crucial to deliver high-quality services. Previous studies presented various modeling and analysis results on system availability of a virtualized system with two servers using a continuous-time Markov chain. In this study, we propose a cluster model of m virtualized servers using stochastic reward nets (SRNs). We focused on the overall configuration of the entire system, and in the modeling, we considered the detailed interactions between the servers. The model incorporates specific techniques for high availability of the system: standby techniques, virtual machine (VM) live migration and VM failover techniques. Simplified failures and recovery behaviors of physical servers and VMs are taken into consideration. Various SRN models are developed based on different case studies in which the techniques to improve the system’s overall availability are incorporated one after another. We conducted comprehensive analyses on the models with significant metrics of interest including: steady-state availability (SSA), sensitivity analysis of the SSA, downtime cost and operational cost analyses. We propose to use reward functions featured in SRN as a solution to help ease the computation of operational costs. The study provides an analytical basis for system adjustment and configuration of virtualized systems in data centers, cloud computing in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 18 May 2018

    The section “Acknowledgement” was incorrect in the original article. The correct section “Acknowledgement” is given below.

References

  1. Nabi M, Toeroe M, Khendek F (2016) Availability in the cloud: state of the art. J Netw Comput Appl 60:54–67. doi:10.1016/j.jnca.2015.11.014

    Article  Google Scholar 

  2. Stansberry M (2013) 2013 data center industry survey. Uptime Institute, LLC, Washington

    Google Scholar 

  3. Thein T, Chi SD, Park JS (2008) Availability modeling and analysis on virtualized clustering with rejuvenation. IJCSNS Int J Comput Sci Netw Secur 8(9):72–80

    Google Scholar 

  4. Myint MTH, Thein T (2010) Availability improvement in virtualized multiple servers with software rejuvenation and virtualization. In: 2010 Fourth International Conference on Secure Software Integration and Reliability Improvement. IEEE, pp 156–162. doi:10.1109/SSIRI.2010.19. ISBN: 978-1-4244-7435-6. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5502845

  5. Kim DS, Machida F, Trivedi KS (2009) Availability modeling and analysis of a virtualized system. In: 2009 15th IEEE Pacific Rim International Symposium on Dependable Computing, vol 1. IEEE, pp 365–371. doi:10.1109/PRDC.2009.64. ISBN: 978-0-7695-3849-5. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5368189

  6. Machida F, Kim DS, Trivedi KS (2013) Modeling and analysis of software rejuvenation in a server virtualized system with live VM migration. Perform Eval 70(3):212–230. doi:10.1016/j.peva.2012.09.003

    Article  Google Scholar 

  7. Machida F, Kim DS, Trivedi KS (2010) Modeling and analysis of software rejuvenation in a server virtualized system. In: 2010 IEEE Second International Workshop on Software Aging and Rejuvenation. IEEE, pp 1–6. doi:10.1109/WOSAR.2010.5722098. ISBN: 978-1-61284-344-5. http://www.mendeley.com/research/modeling-analysis-software-rejuvenation-server-virtualized-system/http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5722098

  8. Matos RDS, Maciel PRM, Machida F, Kim DS, Trivedi KS (2012) Sensitivity analysis of server virtualized system availability. IEEE Trans Reliab 61(4):994–1006. doi:10.1109/TR.2012.2220711

    Article  Google Scholar 

  9. Nguyen TA, Kim DS, Park JS (2014) A comprehensive availability modeling and analysis of a virtualized servers system using stochastic reward nets. Sci World J 2014:1–18. doi:10.1155/2014/165316

    Google Scholar 

  10. Nanda S, Chiueh T (2005) A survey of virtualization technologies. Technical report, SUNY. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.371

  11. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen and the art of virtualization. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles—SOSP’03, vol 37. ACM Press, New York, NY, USA, p 164. doi:10.1145/945445.945462. ISBN: 1581137575. http://dl.acm.org/citation.cfm?id=945445.945462. http://portal.acm.org/citation.cfm?doid=945445.945462

  12. Sahoo J, Mohapatra S, Lath R (2010) Virtualization: a survey on concepts, taxonomy and associated security issues. In: 2010 Second International Conference on Computer and Network Technology (ICCNT). doi:10.1109/ICCNT.2010.49

  13. Morrill H, Beard M, Clitherow D (2008) Achieving continuous availability of IBM systems infrastructures. IBM Syst J 47(4):493–503. doi:10.1147/SJ.2008.5386519

    Article  Google Scholar 

  14. Loveland S, Dow EM, LeFevre F, Beyer D, Chan PF (2008) Leveraging virtualization to optimize high-availability system configurations. IBM Syst J 47(4):591–604. doi:10.1147/SJ.2008.5386515

    Article  Google Scholar 

  15. Radhakrishnan R, Mark K, Powell B (2008) IT service management for high availability. IBM Syst J 47(4):549–561. doi:10.1147/SJ.2008.5386521

    Article  Google Scholar 

  16. Ameen RY, Hamo AY (2013) Survey of server virtualization. Int J Comput Sci Inf Secur 11(3): 65–74. arXiv: 1304.3557. http://arxiv.org/abs/1304.3557

  17. Adeshiyan T, Attanasio CR, Farr EM, Harper RE, Pelleg D, Schulz C, Spainhower LF, Ta-Shma P, Tomek LA (2009) Using virtualization for high availability and disaster recovery. IBM J Res Dev 53(4):8:1–8:11. doi:10.1147/JRD.2009.5429062

    Article  Google Scholar 

  18. Mikkilineni R, Kankanhalli G (2010) Using virtualization to prepare your data center for “real-time assurance of business continuity”. In: 2010 19th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises. IEEE, pp 76–81. doi:10.1109/WETICE.2010.18. ISBN: 978-1-4244-7216-1. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5541978

  19. Thein T, Chi SD, Park JS (2008) Improving fault tolerance by virtualization and software rejuvenation. In: 2008 Second Asia International Conference on Modelling & Simulation (AMS). IEEE, pp 855–860. doi:10.1109/AMS.2008.75. ISBN: 978-0-7695-3136-6. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4530587

  20. Xu J, Li X, Zhong Y, Zhang H (2014) Availability modeling and analysis of a single-server virtualized system with rejuvenation. J Softw 9(1):129–139. doi:10.4304/jsw.9.1.129-139

    Article  Google Scholar 

  21. Han L, Xu J (2013) Availability models for virtualized systems with rejuvenation. J Comput Inf Syst 20:8389–8396. doi:10.12733/jcis8586

    Google Scholar 

  22. Sahner R, Trivedi K, Puliafito A (1997) Performance and reliability analysis of computer systems (an example-based approach using the Sharpe software). IEEE Trans Reliab 46(3):441–441. doi:10.1109/TR.1997.664017

    Article  MATH  Google Scholar 

  23. Nguyen TA, Park JS (2014) Availability Modeling and Analysis in a Virtualized Servers Network, Seoul, Korea

  24. Gray J, Siewiorek D (1991) High-availability computer systems. Computer 24(9):39–48. doi:10.1109/2.84898

    Article  Google Scholar 

  25. Pham C, Kalbarczyk Z, Iyer RK (2012) Toward a high availability cloud: techniques and challenges. In: IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN 2012). IEEE, pp 1–6. doi:10.1109/DSNW.2012.6264687. ISBN: 978-1-4673-2266-9. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6264687

  26. Lumpp T, Schneider J, Holtz J, Mueller M, Lenz N, Biazetti a, Petersen D (2008) From high availability and disaster recovery to business continuity solutions. IBM Syst J 47(4):605–619. doi:10.1147/SJ.2008.5386516

    Article  Google Scholar 

  27. Mondal SK, Muppala JK, Machida F, Trivedi KS (2014) Computing defects per million in cloud caused by virtual machine failures with replication. In: 2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing. IEEE, pp 161–168. doi:10.1109/PRDC.2014.29. ISBN: 978-1-4799-6474-1. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6974785

  28. Mondal SK, Muppala JK (2014) Energy modeling of virtual machine replication schemes with checkpointing in data centers. In: 2014 IEEE Fourth International Conference on Big Data and Cloud Computing. IEEE, pp 633–640. doi:10.1109/BDCloud.2014.37. ISBN: 978-1-4799-6719-3. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7034853. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7034853

  29. Mondal S, Muppala J, Machida F (2016) Virtual machine replication on achieving energy-efficiency in a cloud. Electronics 5(3):37. doi:10.3390/electronics5030037

    Article  Google Scholar 

  30. Cully B, Lefebvre G, Meyer D, Feeley M, Hutchinson N, Warfield A (2008) Remus: high availability via asynchronous virtual machine replication. In: NSDI’08 Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation. USENIX Association, pp 161–174. ISBN: 111- 999-5555-22-1. http://dl.acm.org/citation.cfm?id=1387589.1387601

  31. Polze A, Troger P, Salfner F (2011) Timely virtual machine migration for pro-active fault tolerance. In: 2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops. IEEE, pp 234–243. doi:10.1109/ISORCW.2011.42. ISBN: 978-1-4577-0303-4. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5753533

  32. Chang F, Ji M, Leung ST, MacCormick J, Perl S, Zhang L (2002) Myriad: cost-effective disaster tolerance. In: FAST ’02 Proceedings of the 1st USENIX Conference on File and Storage Technologies. USENIX Association, p 8. http://dl.acm.org/citation.cfm?id=1083323.1083334

  33. Trivedi KS, Kim DS, Roy A, Medhi D (2009) Dependability and security models. In: Proceedings of the 2009 7th International Workshop on the Design of Reliable Communication Networks. DRCN, pp 11–20. doi:10.1109/DRCN.2009.5340029. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5340029

  34. Trivedi KS, Kim DS, Ghosh R (2013) System availability assessment using stochastic models. Appl Stoch Models Bus Ind 29(2):94–109. doi:10.1002/asmb.951

    Article  MathSciNet  Google Scholar 

  35. Bailey D, Frank-Schultz E, Lindeque P, Temple JL III (2008) Three reliability engineering techniques and their application to evaluating the availability of IT systems: an introduction. IBM Syst J 47(4):577–589. doi:10.1147/SJ.2008.5386507

    Article  Google Scholar 

  36. Smith WE, Trivedi KS, Tomek LA, Ackaret J (2008) Availability analysis of blade server systems. IBM Syst J 47(4):621–640. doi:10.1147/SJ.2008.5386524

    Article  Google Scholar 

  37. Ever E (2016) Performability analysis of cloud computing centers with large numbers of servers. J Supercomput 1–27. doi:10.1007/s11227-016-1906-5. ISSN: 0920-8542. http://link.springer.com/10.1007/s11227-016-1906-5

  38. Muppala JK, Ciardo G, Trivedi KS (1994) Stochastic reward nets for reliability prediction. Commun Reliab Maintainab Serviceability 9–20. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.1102

  39. Seshadri S, Muench PH, Chiu L, Koltsidas I, Ioannou N, Haas R, Liu Y, Mei M, Blinick S (2014) Software defined just-in-time caching in an enterprise storage system. IBM J Res Dev 58(2/3):7:1–7:13. doi:10.1147/JRD.2014.2303595

    Article  Google Scholar 

  40. Maciel P, Matos R, Callou G, Silva B, Barreto D, Araujo J, Araujo J, Alves V, Worth S (2014) Performance evaluation of sheepdog distributed storage system. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 3370–3375. doi:10.1109/SMC.2014.6974448. ISBN: 978-1-4799-3840-7. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6974448

  41. Clitherow D, Brookbanks M, Clayton N, Spear G (2008) Combining high availability and disaster recovery solutions for critical IT environments. IBM Syst J 47(4):563–575. doi:10.1147/SJ.2008.5386509

    Article  Google Scholar 

  42. Cocchiara R, Davis H, Kinnaird D (2008) Data center topologies for mission-critical business systems. IBM Syst J 47(4):695–706. doi:10.1147/SJ.2008.5386510

    Article  Google Scholar 

  43. Andrzejak A, Silva L (2008) Using machine learning for non-intrusive modeling and prediction of software aging. In: NOMS 2008—2008 IEEE Network Operations and Management Symposium. IEEE, pp 25–32. doi:10.1109/NOMS.2008.4575113. ISBN: 978-1-4244-2065-0. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4575113

  44. Alonso J, Torres J, Berral JL, Gavalda R (2010) Adaptive on-line software aging prediction based on machine learning. In: Proceedings of 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN). IEEE, pp 507–516. doi:10.1109/DSN.2010.5544275. ISBN: 978-1-4244-7500-1. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5544275

  45. Ciardo G, Muppala J, Trivedi K (1989) SPNP: stochastic Petri net package. In: Proceedings of the Third International Workshop on Petri Nets and Performance Models, PNPM89, pp 142–151. doi:10.1109/PNPM.1989.68548. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=68548. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.9688

  46. Melo M, Maciel P, Araujo J, Matos R, Araujo C (2013) Availability study on cloud computing environments: live migration as a rejuvenation mechanism. In: 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, pp 1–6. doi:10.1109/DSN.2013.6575322. ISBN: 978-1-4673-6472-0. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6575322

  47. Sousa E, Lins F, Tavares E, Cunha P, Maciel P (2014) A modeling approach for cloud infrastructure planning considering dependability and cost requirements. IEEE Trans Syst Man Cybern Syst (99): 1–1 (2014). doi:10.1109/TSMC.2014.2358642. ISSN: 2168-2216. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6913553

  48. Sousa E, Silva E, Lins F, Tavares E, Maciel P (2014) Dependability evaluation of cloud infrastructures. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 1282–1287. doi:10.1109/SMC.2014.6974091. ISBN: 978-1-4799-3840-7. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6974091

  49. Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt I, Warfield A (2005) Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation. vol 2(Vmm), pp 273–286. http://dl.acm.org/citation.cfm?id=1251203.1251223. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.374

  50. Kourai K, Chiba S (2011) Fast software rejuvenation of virtual machine monitors. IEEE Trans Dependable Secure Comput 8(6):839–851. doi:10.1109/TDSC.2010.20

    Article  Google Scholar 

  51. Melo C, Matos R, Dantas J, Maciel P (2017) Capacity-oriented availability model for resources estimation on private cloud infrastructure. In: 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC). IEEE, pp 255–260. doi:10.1109/PRDC.2017.49. ISBN: 978-1-5090-5652-1. http://ieeexplore.ieee.org/document/7920629/

  52. Patel P, Ranabahu A, Sheth A (2009) Service level agreement in cloud computing. Kno.e.sis Publications. http://corescholar.libraries.wright.edu/knoesis/78

  53. Anala M, Kashyap M, Shobha G (2013) Application performance analysis during live migration of virtual machines. doi:10.1109/IAdCC.2013.6514252

  54. Ma F, Liu F, Liu Z (2010) Live virtual machine migration based on improved pre-copy approach. doi:10.1109/ICSESS.2010.5552416

  55. Strunk A, Dargie W (2013) Does live migration of virtual machines cost energy? doi:10.1109/AINA.2013.137

  56. Strunk A (2012) Costs of virtual machine live migration: a survey. In: 2012 IEEE Eighth World Congress on Services. IEEE, pp 323–329. doi:10.1109/SERVICES.2012.23. ISBN: 978-1-4673-3053-4. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6274069

  57. Trivedi KS, Sigmon TM (1979) A performance comparison of optimally designed computer systems with and without virtual memory. In: Proceedings of the 6th Annual Symposium on Computer Architecture—ISCA’79. ACM Press, New York, NY, USA, pp 117–121. doi:10.1145/800090.802900. http://dl.acm.org/citation.cfm?id=800090.802900

  58. Trivedi KS (1980) Designing linear storage hierarchies so as to maximize reliability subject to cost and performance constraints. In: Proceedings of the 7th Annual Symposium on Computer Architecture—ISCA’80. ACM Press, New York, NY, USA, pp 211–217. doi:10.1145/800053.801928. http://dl.acm.org/citation.cfm?id=800053.801928

  59. Longo F, Distefano S, Bruneo D, Scarpa M (2015) Dependability modeling of software defined networking. Comput Netw 83:280–296. doi:10.1016/j.comnet.2015.03.018

    Article  Google Scholar 

  60. Distefano S, Longo F, Trivedi KS (2012) Investigating dynamic reliability and availability through statespace models. Comput Math Appl 64(12):3701–3716. doi:10.1016/j.camwa.2012.02.038

    Article  MathSciNet  MATH  Google Scholar 

  61. Distefano S, Trivedi KS (2013) Non-markovian state-space models in dependability evaluation. Q Reliab Eng Int 29(2):225–239. doi:10.1002/qre.1305

    Article  Google Scholar 

  62. Distefano S, Longo F, Scarpa M, Trivedi KS (2014) Non-markovian modeling of a bladecenter chassis midplane. Springer, pp 255–269. doi:10.1007/978-3-319-10885-8_18. http://link.springer.com/10.1007/978-3-319-10885-8_18

  63. Machida F, Kim DS, Trivedi KS (2013) Modeling and analysis of software rejuvenation in a server virtualized system with live VM migration. In: Performance Evaluation, vol 70. IEEE, pp 212–230. doi:10.1016/j.peva.2012.09.003. ISBN: 9781612843469. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5722098

  64. Trivedi KS (2001) Probability and statistics with reliability, queuing and computer science applications, 2nd edn. Wiley-Interscience, Chichester, p 830. ISBN: 0-471-33341-7. http://www.amazon.com/Probability-Statistics-Reliability-Queueing-Applications/dp/0471333417. http://dl.acm.org/citation.cfm?id=501883

  65. Trivedi KS, Vasireddy R, Trindale D, Nathan S, Castro R (2006) Modeling high availability systems. In: 2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC’06). IEEE, pp 154–164. doi:10.1109/PRDC.2006.45. ISBN: 0-7695-2724-8. http://www.computer.org/csdl/proceedings/prdc/2006/2724/00/27240154-abs.html

  66. Deshpande U, Kulkarni U, Gopalan K (2012) Inter-rack live migration of multiple virtual machines. In: Proceedings of the 6th International Workshop on Virtualization Technologies in Distributed Computing Date—VTDC’12. ACM Press, New York, NY, USA, p 19. doi:10.1145/2287056.2287062. ISBN: 9781450313445. http://dl.acm.org/citation.cfm?doid=2287056.2287062

  67. Svärd P, Hudzia B, Tordsson J, Elmroth E, Svärd P, Hudzia B, Tordsson J, Elmroth E (2011) Evaluation of delta compression techniques for efficient live migration of large virtual machines. ACM SIGPLAN Not 46(7):111. doi:10.1145/2007477.1952698

    Article  Google Scholar 

  68. Hines MR, Deshpande U, Gopalan K (2009) Post-copy live migration of virtual machines. ACM SIGOPS Oper Syst Rev 43(3):14. doi:10.1145/1618525.1618528

    Article  Google Scholar 

  69. Hirofuchi T, Nakada H, Itoh S, Sekiguchi S (2011) Reactive consolidation of virtual machines enabled by postcopy live migration. In: Proceedings of the 5th International Workshop on Virtualization Technologies in Distributed Computing—VTDC’11. ACM Press, New York, NY, USA, p 11. doi:10.1145/1996121.1996125. ISBN: 9781450307017. http://portal.acm.org/citation.cfm?doid=1996121.1996125

  70. Sahni S, Varma V (2012) A hybrid approach to live migration of virtual machines. In: 2012 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). IEEE, pp 1–5. doi:10.1109/CCEM.2012.6354587. ISBN: 978-1-4673-4422-7. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6354587. http://ieeexplore.ieee.org/document/6354587/

  71. Yin F, Liu W, Song J (2014) Live virtual machine migration with optimized three-stage memory copy. Springer, Berlin, pp 69–75. doi:10.1007/978-3-642-40861-8_11. http://link.springer.com/10.1007/978-3-642-40861-8_11

  72. Maleszewski J, Sosnowski J (2018) Managing and enhancing performance benchmarks. In: Zamojski W, Mazurkiewicz J, Sugier J, Walkowiak T, Kacprzyk J (eds) Advances in Dependability Engineering of Complex Systems: Proceedings of the Twelfth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX, July 2–6, 2017, Brunów, Poland. Springer, Cham, pp 287–297. doi:10.1007/978-3-319-59415-6_28. ISBN: 978-3-319-59415-6. http://dx.doi.org/10.1007/978-3-319-59415-6_28

  73. Shojafar M, Canali C, Lancellotti R, Abawajy J (2016) Adaptive computing-plus-communication optimization framework for multimedia processing in cloud systems. IEEE Trans Cloud Comput 1–1. doi:10.1109/TCC.2016.2617367. ISSN: 2168-7161. http://ieeexplore.ieee.org/document/7590092/

  74. Ghosh R, Longo F, Naik VK, Trivedi KS (2012) Modeling and performance analysis of large scale IaaS clouds. doi:10.1016/j.future.2012.06.005. http://www.sciencedirect.com/science/article/pii/S0167739X12001410

  75. Ghosh R, Longo F, Frattini F, Russo S, Trivedi K (2014) Scalable analytics for IaaS cloud availability. IEEE Trans Cloud Comput (99) 1–1. doi:10.1109/TCC.2014.2310737. ISSN: 2168-7161. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6762970

  76. Guida M, Longo M, Postiglione F, Trivedi KS, Yin X (2013) Semi-Markov models for performance evaluation of failure-prone IP multimedia subsystem core networks. Proc Inst Mech Eng Part O J Risk Reliab 227(3):290–301. doi:10.1177/1748006X13485191

    Google Scholar 

  77. Shojafar M, Javanmardi S, Abolfazli S, Cordeschi N (2015) FUGE: a joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method. Cluster Comput 18(2):829–844. doi:10.1007/s10586-014-0420-x

    Article  Google Scholar 

  78. Constazltinescu C, Trivedi K (1994) A stochastic reward net model for dependability analysis of real-time computing systems. In: Proceedings of 2nd IEEE Workshop on Real-Time Applications. IEEE Computer Society Press, pp 142–146. doi:10.1109/RTA.1994.316162. ISBN: 0-8186-6375-8. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=316162

  79. Liu Y, Trivedi KS (2006) Survivability quantification: the analytical modeling approach. Int J Perform Eng 2(1):29. http://www.ijpe-online.com/p3-survivability-quantification-the-analytical-modeling-approach.html#axzz3v44nELpI

Download references

Acknowledgements

We appreciate and thank a number of peer reviewers and colleagues who are devoted to give valuable and constructive comments and suggestions. This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2017-2016-0-00465) supervised by the IITP (Institute for Information & communications Technology Promotion).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuan Anh Nguyen or Dugki Min.

Appendices

Appendix 1: Stochastic reward nets

Stochastic reward net (SRN) is used in sufficiently modeling many hardware and software structures of real-time computing systems [78, 79]. To build SRN model, we use three main components: places, transitions and arcs. Arcs only connect place(s) to transition(s) and transition(s) to places. There is an integer number of entities named token denoted by dot sign or integer number in the places. Transition can be enabled to transport tokens from and to places called firing. The state or condition of the system is decided by location of tokens [22, 64]. That means, a set of current location of tokens in SRN models reflects the state or condition of the system, called marking. Guard is a Boolean condition attached to each transition to perform marking dependence. To succinctly describe many complex behaviors, marking-dependent firing rates of transitions are applied as a function of the current marking. This dependency is denoted by \( \# \) sign next to the transition. More general dependencies are often needed and hence allowed in the SRN formalism [64]. There are other features such as input arcs, inhibit arcs, multiplicities, so that SRN models can be simplified. In the following sections, we present very detailed description of the SRN models for small-scale VSS.

Appendix 2: Definition of guard functions in SRN models

See Table 7.

Table 7 Definition of guard functions and entities used in the SRN models

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.A., Min, D. & Choi, E. A comprehensive evaluation of availability and operational cost for a virtualized server system using stochastic reward nets. J Supercomput 74, 222–276 (2018). https://doi.org/10.1007/s11227-017-2127-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2127-2

Keywords

Navigation