Skip to main content
Log in

Dynamic performance isolation management for cloud computing services

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Unmanaged resource contention in cloud computing environments can cause problems such as performance interference, service quality degradation, and consequently service agreements violation. Performance isolation is an indispensable remedy solution for the mentioned challenges. Dynamic analysis and monolithic management of the performance isolation from the perspective of cloud computing services with different operating entities is a challenging problem. This issue has not been addressed in previous studies, despite its significance. Most previous researches have focused on particular algorithms and methods for specific application scenarios, and lack sufficient descriptions about analysis and management aspects of the performance isolation. Due to the importance of this issue, this paper aims to make an in-depth investigation of this problem and propose a novel approach in order to dynamic analysis and management of the performance isolation for cloud computing services. Proposed approach employs a novel architectural framework, named DPIM, which enables service providers to realize different isolation methods and enforces performance isolation transparently. The experimental results demonstrate the practicality and effectiveness of the proposed approach and related framework for performance isolation management in different service environments, with different operating entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Durao F, Carvalho JFS, Fonseka A, Garcia VC (2014) A systematic review on cloud computing. J Supercomput 68(3):1321–1346. doi:10.1007/s11227-014-1089-x

    Article  Google Scholar 

  2. Rimal BP, Jukan A, Katsaros D, Goeleven Y (2011) Architectural requirements for cloud computing systems: an enterprise cloud approach. J Grid Comput 9(1):3–26. doi:10.1007/s10723-010-9171-y

    Article  Google Scholar 

  3. AlJahdali H, Albatli A, Garraghan P, Townend P, Lau L, Xu J (2014) Multi-tenancy in cloud computing. In: Proceedings of the 8th IEEE international symposium on service-oriented system engineering (SOSE), pp 344–351. doi:10.1109/SOSE.2014.50

  4. Sureshkumar D, Kannan RJ, Purniemaa P (2013) Multi-tenancy deploy model and issues in SAAS: a survey. J Comput Sci Appl (TIJCSA) 2(08):41–49

    Google Scholar 

  5. Ferretti S, Ghini V, Panzieri F, Pellegrini M, Turrini E (2010) Qos-aware clouds. In: Cloud Computing (CLOUD) 3rd IEEE International Conference, pp 321–328. doi:10.1109/CLOUD.2010.17

  6. Son S, Jung G, Jun SC (2013) An SLA-based cloud computing that facilitates resource allocation in the distributed data centers of a cloud provider. J Supercomput 64(2):606–637. doi:10.1007/s11227-012-0861-z

    Article  Google Scholar 

  7. Serrano D, Bouchenak S, Kouki Y, de Oliveira Jr FA, Ledoux T, Lejeune J, Sopena J, Arantes L, Sens P (2015) SLA guarantees for cloud services. J Future Gener Comput Syst 54:233–246. doi:10.1016/j.future.2015.03.018

    Article  Google Scholar 

  8. He S, Guo L, Guo Y (2014) Elastic application container system: elastic web applications provisioning. Handbook of research on demand-driven Web services: theory, technologies, and applications: theory, technologies, and applications, pp 376–398

  9. Litoiu M, Woodside M, Wong J, Ng J, Iszlai G (2010) A business driven cloud optimization architecture. In: Proceedings of the ACM symposium on applied computing, pp 380–385. doi:10.1145/1774088.1774170

  10. Krebs R, Momm C, Kounev S (2014) Metrics and techniques for quantifying performance isolation in cloud environments. J Sci Comput Program 90:116–134

    Article  Google Scholar 

  11. Krebs R, Loesch M, Kounev S (2014) Platform-as-a-Service architecture for performance isolated multi-tenant applications. In: Cloud Computing (CLOUD) 7th IEEE International Conference, pp 914–921. doi:10.1109/CLOUD.2014.125

  12. Krebs R, Loesch M (2014) Comparison of request admission based performance isolation approaches in multi-tenant SaaS applications. In: Proceedings of the 4th International Conference on Cloud Computing and Service Science (CLOSER 2014)

  13. Nathuji R, Kansal A, Ghaffarkhah A (2010) Q-clouds: managing performance interference effects for qos-aware clouds. In: Proceedings of the 5th European Conference on Computer Systems ACM, pp 237–250. doi:10.1145/1755913.1755938

  14. Fu X, Zhou C (2015) Virtual machine selection and placement for dynamic consolidation in cloud computing environment. J Front Comput Sci 9(2):322–330. doi:10.1007/s11704-015-4286-8

    Article  MathSciNet  Google Scholar 

  15. Singh S, Chana I (2016) Resource provisioning and scheduling in clouds: QoS perspective. J Supercomput 72(3):926–960. doi:10.1007/s11227-016-1626-x

    Article  Google Scholar 

  16. Guitart J, Torres J, Ayguad E (2010) A survey on performance management for internet applications. Concurr Comput: Pract Exp 22(1):68–106. doi:10.1002/cpe.1470

    Article  Google Scholar 

  17. Bu X (2013) Autonomic management and performance optimization for cloud computing services. Dissertation, Wayne State University, Detroit

  18. Nelson R (2013) Probability, stochastic processes, and queueing theory: the mathematics of computer performance modeling. Springer, New York

  19. Ye J, Dongxing J, Qixin L (2013) A control theory based performance isolation framework for PaaS. In: BCGIN ’13 Proceedings of the 2013 International Conference on Business Computing and Global Informatization, pp 1070–1073. doi:10.1109/BCGIN.2013.285

  20. Lin H, Sun K, Zhao S, Han Y (2009) Feedback-control-based performance regulation for multi-tenant applications. In: Parallel and Distributed Systems (ICPADS) 15th IEEE Conference, pp 134–141

  21. Buschmann F, Douglas KH, Schmidt C (2007) Pattern-oriented software architecture, on patterns and pattern languages, 1st edn. Wiley, Hoboken

  22. Gupta P (2012) Unified master service catalogue manager for cloud. J Soft Comput Eng (IJSCE) 2(3):2231–2307

    Google Scholar 

  23. Aceto G, Botta A, Donato WD, Pescap A (2013) Cloud monitoring: a survey. J Comput Netw 57(9):2093–2115. doi:10.1016/j.comnet.2013.04.001

    Article  Google Scholar 

  24. Calero JA, Aguado JG (2015) MonPaaS: an adaptive monitoring platform as a service for cloud computing infrastructures and services. Serv Comput IEEE Trans 8(1):65–78

    Article  Google Scholar 

  25. Meng S, Liu L (2012) Monitoring-as-a-service in the cloud. In: ICPE ’13 Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering, pp 373-374. doi:10.1145/2479871.2479929

  26. Application Response Measurement, ARM. http://www.opengroup.org/management/arm/. Accessed Aug 2009

  27. Java Management Extensions, JMX. http://java.sun.com/javase/technologies/core/javamanagement/. Accessed Aug 2009

  28. Nimsoft Monitor Solution. http://www.nimsoft.com/solutions/nimsoftmonitor/cloud. Accessed 2012

  29. Nagios.org. http://www.nagios.org. Accessed 3 Feb 2012

  30. Amazon CloudWatch. http://aws.amazon.com/es/cloudwatch/. Accessed 2013

  31. Cloudharmony. http://cloudharmony.com/. Accessed 1 Sept 2014

  32. Wang W, Huang X, Qin X, Zhang W, Wei J, Zhong H (2012) Application-level cpu consumption estimation: towards performance isolation of multi-tenancy web applications. In: Cloud Computing (Cloud), 5th IEEE Conference, pp 439–446. doi:10.1109/CLOUD.2012.81

  33. Krebs R, Spinner S, Ahmed N, Kounev S (2014) Resource usage control in multi-tenant applications. In: Cluster, cloud and grid computing, 14th IEEE/ACM international symposium, pp 122–131

  34. Smith WD (2000) TPC-W: benchmarking an ecommerce solution

  35. Joshi A, Kale S, Chandel S, Pal D (2015) Likert Scale: explored and explained. Br J Appl Sci Technol 7(4):396–403. doi:10.9734/BJAST/2015/14975

    Article  Google Scholar 

  36. Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) kvm: the Linux virtual machine monitor. In: Proceedings of the Linux symposium, pp 225–230

  37. Jones R, Netperf. Open source benchmarking software. URL: http://www.netperf.org

  38. Walraven S, Monheim T, Truyen E, Joosen W (2012) Towards performance isolation in multi-tenant SaaS applications. In: Proceedings of the 7th ACM workshop on middleware for next generation internet computing. doi:10.1145/2405178.2405184

  39. Shojafar M, Cordeschi N, Baccarelli E (2016) Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Trans Cloud Comput PP(99):1–14. doi:10.1109/TCC.2016.2551747

  40. Sukwong O, Sangpetch A, Kim H.S (2012) SageShift: managing SLAs for highly consolidated cloud. In: INFOCOM proceedings IEEE, pp 208–216. doi:10.1109/INFCOM.2012.6195591

  41. Citrix XenServer [Online]. http://www.citrix.com/products/xenserver/overview.html

  42. Tam DK, Azimi R, Soares LB, Stumm M (2009) RapidMRC: approximating L2 miss rate curves on commodity systems for online optimizations. ACM SIGARCH Comput Architect News (1):121–132

  43. Zhang X, Dwarkadas S, Shen K (2009)Towards practical page coloring based multicore cache management. In: Proceedings of the 4th ACM European Conference on Computer Systems (EuroSys). doi:10.1145/1519065.1519076

  44. Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2013) Memguard: Memory bandwidth reservation system for efficient performance isolation in multi-core platforms. In: IEEE 19th real-time and embedded technology and applications symposium (RTAS), pp 55–64. doi:10.1109/RTAS.2013.6531079

  45. Gundecha R (2008) Performance isolation in virtualized machines. Dissertation, Mumbai

  46. Silva M, Ryu KD, Da Silva D (2012) VM performance isolation to support qos in cloud. In: 26th Parallel and distributed processing IEEE symposium workshops & Ph.D. forum, pp 1144–1151

  47. Singh S, Chana I (2015) QRSF: QoS-aware resource scheduling framework in cloud computing. J Supercomput 71(1):241–292. doi:10.1007/s11227-014-1295-6

    Article  Google Scholar 

  48. Novakovic D, Vasic N, Novakovic S, Kostic D, Bianchini R (2013) Deepdive: transparently identifying and managing performance interference in virtualized environments. In: USENIX ATC’13 Proceedings of the 2013 USENIX Conference on Annual Technical Conference, pp 219–230

  49. Somani G, Khandelwal P, Phatnani K (2012) Vupic: virtual machine usage based placement in IaaS cloud. arXiv preprint arXiv:1212.0085

  50. Lama P, Zhou X (2012) NINEPIN: non-invasive and energy efficient performance isolation in virtualized servers. In: 42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp 1–12

  51. Lama P, Guo Y, Zhou X (2013) Autonomic performance and power control for co-located web applications on virtualized servers. In: Quality of Service (IWQoS), 2013 IEEE/ACM 21st international symposium, pp 1–10. doi:10.1109/IWQoS.2013.6550266

  52. Ismail BI, Jagadisan D, Khalid MF (2011) Determining overhead, variance and isolation metrics in virtualization for IaaS Cloud. In: Data driven e-Science, pp 315–330

  53. Liu H, He B (2014) Reciprocal resource fairness: towards cooperative multiple-resource fair sharing in IaaS clouds. In: Proceedings of the IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp 970–981. doi:10.1109/SC.2014.84

  54. Angel S, Ballani H, Karagiannis T, OShea G, Thereska E (2014) End-to-end performance isolation through virtual datacenters. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, pp 233–248

  55. Shojafar M, Canali C, Lancellotti R, Abawajy J (2016) Adaptive computing-plus-communication optimization framework for multimedia processing in cloud systems. IEEE Trans Cloud Comput 99:11. doi:10.1109/TCC.2016.2617367

    Google Scholar 

  56. Thereska E, Ballani H, OShea G, Karagiannis T, Rowstron A, Talpey T, Black R, Zhu T, (2013) IOFlow: a software-defined storage architecture. In Proceedings of the ACM symposium on operating systems principles (SOSP). doi:10.1145/2517349.2522723

  57. Jalili Marandi P, Gkantsidis C, Junqueira F, Narayanan D (2016) Filo: consolidated consensus as a cloud service. In: Proceeding USENIX ATC ’16 Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference, pp 237–249

  58. Shue D, Freedman MJ, Shaikh A (2012) Performance isolation and fairness for multi-tenant cloud storage. OSDI 2012:349–362

    Google Scholar 

  59. Wu S, Tao S, Ling X, Fan H, Jin H, Ibrahim S (2015) IShare: balancing I/O performance isolation and disk I/O efficiency in virtualized environments. Practice and experience, concurrency and computation. doi:10.1002/cpe.3496

  60. Wang X, Xie X, Jin H, Shi X, Cao W, Ke X (2013) A disk bandwidth allocation mechanism with priority. J Supercomput 66(2):686–699. doi:10.1007/s11227-012-0857-8

    Article  Google Scholar 

  61. Shieh A, Kandula S, Greenberg A, Kim C (2010) Seawall: performance isolation for cloud datacenter networks. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing

  62. Jeyakumar V, Alizadeh M, Mazieres D, Prabhakar B, Kim C, Greenberg A (2013) EyeQ: practical network performance isolation at the edge. In: Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation , pp 297–312

  63. Guo J, Liu F, Lui J, Jin HJ (2016) Fair network bandwidth allocation in IaaS datacenters via a cooperative game approach. IEEE Trans Netw 24(2):873–886. doi:10.1109/TNET.2015.2389270

    Article  Google Scholar 

  64. Lu C, Lu Y, Abdelzaher TF, Stankovic J, Son SH (2006) Feedback control architecture and design methodology for service delay guarantees in web servers. Parallel Distrib Syst IEEE Trans 17(9):1014–1027

    Article  Google Scholar 

  65. Hellerstein JL, Morrison V, Eilebrecht E (2010) Applying control theory in the real world: experience with building a controller for the. net thread pool. ACM SIGMETRICS Perform Eval Rev 37(3):38–42. doi:10.1145/1710115.1710123

    Article  Google Scholar 

  66. Yu J, Rao R (2012) A method for solving the performance isolation problem in PaaS based on forecast and dynamic programming. In: Computational and Information Sciences (ICCIS), Fourth International Conference, pp 947–950. doi:10.1109/ICCIS.2012.23

  67. Dua R, Kakadia D (2014) Virtualization versus containerization to support PaaS. In: Cloud Engineering (IC2E), 2014 IEEE International Conference, pp 610–614. doi:10.1109/IC2E.2014.41

  68. Calheiros RN, Vecchiola C, Karunamoorthy D, Buyya R (2012) The Aneka platform and QoS-driven resource provisioning for elastic applications on hybrid clouds. J Future Gener Comput Syst 28(6):861–870

    Article  Google Scholar 

  69. Jennings R (2010) Cloud computing with the Windows Azure platform, 1st edn. Wiley, Hoboken

  70. Mcgrath MP, Hicks M, West T, McPherson DC (2012) Mechanism for controlling capacity in a multi-tenant platform-as-a-service (Paas) environment in a cloud computing system. In: Google patents

  71. Loesch M, Krebs R (2013) Conceptual approach for performance isolation in multi-tenant systems. CLOSER 2013:297–302

    Google Scholar 

  72. Narasayya VR, Das S, Syamala M, Chandramouli B, Chaudhuri S (2013) SQLVM: Performance isolation in multi-tenant relational database-as-a-service. In: 6th Biennial Conference on Innovative Data Systems Research (CIDR’13)

  73. Das S, Narasayya VR, Li F, Syamala M (2013) CPU sharing techniques for performance isolation in multi-tenant relational database-as-a-service. Proc VLDB Endow 7(1):37–48. doi:10.14778/2732219.2732223

    Article  Google Scholar 

  74. Kiefer T, Schn H, Habich D, Lehner W (2014) A query, a minute: evaluating performance isolation in cloud databases. In: Performance characterization and benchmarking. Traditional to big data, pp 173–187. doi:10.1007/978-3-319-15350-6_11

  75. Zhang Y, Wang Z, Gao B, Guo C, Sun W, Li X (2010) An effective heuristic for on-line tenant placement problem in SaaS. In: Web Services (icws), 2010 IEEE International Conference, pp 425–432. doi:10.1109/ICWS.2010.65

  76. Fehling C, Leymann F, Mietzner R (2010) A framework for optimized distribution of tenants in cloud applications. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference, pp 252–259

  77. Guo CJ, Sun W, Huang Y, Wang ZH, Gao B (2007) A framework for native multi-tenancy application development and management. In: E-Commerce Technology and the 4th IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, pp 551–558

  78. Liu XH, Li TC, Chen Y (2008) SPIN: service performance isolation infrastructure in multi-tenancy environment. In: Service-oriented computing ICSOC 2008, pp 649–663

  79. Oral A, Tekinerdogan B (2015) Supporting performance isolation in software as a service systems with rich clients. In: IEEE International Congress on Big Data, pp 297–304. doi:10.1109/BigDataCongress.2015.49

  80. Cheng X, Shi Y, Li Q (2009) A multi-tenant oriented performance monitoring, detecting and scheduling architecture based on SLA. In: Joint Conferences on Pervasive Computing (JCPC), pp 599–604. doi:10.1109/JCPC.2009.5420114

  81. Huang J et al (2017) Flashblox: achieving both performance isolation and uniform lifetime for virtualized ssds. In: 15th USENIX Conference on File and Storage Technologies (FAST), USENIX

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Ali Seyyedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fareghzadeh, N., Seyyedi, M.A. & Mohsenzadeh, M. Dynamic performance isolation management for cloud computing services. J Supercomput 74, 417–455 (2018). https://doi.org/10.1007/s11227-017-2135-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2135-2

Keywords

Navigation