Skip to main content
Log in

Cross-range scaling of inverse synthetic aperture radar images with complex moving targets based on parameter estimation

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

To solve the problem of ISAR imaging cross-range scaling of complex motion of target, this paper analyzes kinetic mechanism of complex motion of the target. The motion forms will produce different Doppler frequency if the target is different. For 2D rotation target, the proportion of azimuth angle and pitch angle keeps constant, and the synthetic rotation vector is polynomial function of time. This paper takes “Matching Fourier Transform Algorithm” as the processing method to estimate the motion parameters of target. Additionally, the simulated result indicates the effectiveness of algorithm. For 3D rotation target, the paper adopts “Target Observation Matrix Decomposition method” to obtain European calibrated viewing angle vector matrix, and further get azimuth angle as well as pitch angle sequences of the target. Moreover, LS method is used for parameter estimation and the result is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cumming IG, Wong FH (2007) Digital processing of synthetic aperture radar data: algorithm and implementation. Artech House, Norwood

    Google Scholar 

  2. Sullivan RJ (2009) Radar foundations for imaging and advanced concepts. SciTech Publishing, New York

    Google Scholar 

  3. Soumekh M (1999) Synthetic aperture radar signal processing with MATLAB algorithms. Wiley, London

    MATH  Google Scholar 

  4. Lazarov AD, Minchev CN (2004) Complementary code ISAR technique for stealth target detection and identification. Digit Avion Syst Conf 1:1–11

    Google Scholar 

  5. Stuff M, Sanchez P, Biancala M (2003) Extraction of three-dimensional motion and geometric invariants. Multidimens Syst Signal Proces 14:161–181

    MATH  Google Scholar 

  6. Ferrara M, Arnold G, Stuff M (2009) Shape and motion reconstruction from 3D-to-1D orthographically projected data via object-image relations. IEEE 7Fransactions Pattern Anal Mach Intell 31(10):1906–1912

    Google Scholar 

  7. Whitaker R, Gregor J (2002) A maximum-likelihood surface estimator for dense range data. IEEE Trans Pattern Anal Mach Intell 24(10):1372–1387

    Google Scholar 

  8. Arnold G, Stiller PF, Sturtz K (2006) Object-image metrics for generalized weak perspective projection. In: Krim H, Yezzi A (eds) Statistics and analysis of shapes. Modeling and simulation in science, engineering and technology. Birkhäuser, Boston, pp 253–279. https://doi.org/10.1007/0-8176-4481-4_10

    Google Scholar 

  9. Zhang Q, Yeo TS, Tan HS et al (2008) Imaging of a moving target with rotating pans based on the Hough transform. IEEE Trans Geosci Remote Sens 46(1):291–299

    Google Scholar 

  10. Savy L, Gaie C (2007) Model-based classification of aircraft ranges profiles using data association algorithms. In: IEEE Radar Conference, 2007, pp 822–827

  11. Zhang L (2012) High resolution SAR/ISAR imaging and error compensation technology. Xidian University, Xidian, pp 49–56

    Google Scholar 

  12. Wang L, Zhu D, Zhu Z (2008) Image-based scaling for ship top-view ISAR images. J Electron 25(1):76–83

    Google Scholar 

  13. Huang Y, Wang X, Li X et al (2013) Target rotation rate estimation via ISAR frame processing. Electron Lett 49(6):424–425

    Google Scholar 

  14. Wang Y, Jiang Y (2008) A novel algorithm for estimating the rotation angle in ISAR imaging. IEEE Geosci Remote Sens Lett 5(4):608–609

    Google Scholar 

  15. Kang M-S, Kim K-T (2015) ISAR cross-range scaling using principal component analysis and exhaustive search algorithm . In: 2015 IEEE Radar Conference, Arlington, VA, pp 0386–0389

  16. Zhang R, Shen J, Wei F et al (2017) Medical image classification based on multi-scale non-negative sparse coding. Artif Intell Med. https://doi.org/10.1016/j.artmed.2017.05.006

    Google Scholar 

  17. Samuel OW, Arun GMA, Sangaiahc K et al (2017) Multi-technique object tracking approach-A reinforcement paradigm. Comput Electr Eng. https://doi.org/10.1016/j.artmed.2017.05.006

    Google Scholar 

  18. Li A, Chen D, Lin K et al (2016) Nonlocal joint regularizations framework with application to image denoising. Circuits Syst Signal Process 35(8):2932–3942

    Google Scholar 

  19. Li A, Chen D, Sun G et al (2016) Sparse representation-based image restoration via nonlocal supervised coding. Opt Rev 23(5):776–783

    Google Scholar 

  20. Zhang H (2010) ISAR imaging transverse calibration problem. Harbin Institute of Technology, Harbin

    Google Scholar 

  21. Wang X (2012) Study on azimuth calibration method of ISAR image. Nanjing University of Aeronautics and Astronautics, Nanjing

    Google Scholar 

  22. Yeh C, Xu J, Peng Y et al (2009) Cross-range scaling for ISAR based on image rotation correlation. IEEE Geosci Remote Sens Lett 6(3):597–601

    Google Scholar 

  23. Loog M, Lauze F (2010) The improbability of harris interest points. IEEE Trans Pattern Anal Mach Intell 32(6):1141–1147

    Google Scholar 

  24. Corke P (2011) Robotics, vision and control: fundamental algorithms in MATLAB. Springer, Berlin

    MATH  Google Scholar 

  25. Patel VM, Easley GR, Healy DM, Chellappa R (2010) Compressed synthetic aperture radar. IEEE J Sel Top Signal Proces 4(2):244–254

    Google Scholar 

  26. Xu G, Bao M, Li Y-C, Xing M-D (2011) High precision ISAR imaging via Bayesian statistics. Syst Eng Electron 33(11):2382–2388

    Google Scholar 

  27. Wang C, Wang Y, Li SB (2013) Inverse synthetic aperture radar imaging of ship targets with complex motion based on match Fourier transform for cubic chirps model. IET Radar Sonar Navig 7(9):994–1003

    Google Scholar 

  28. Zhang Y-K, Xiao Y, Hu S-H (2011) 3D motion and geometric information system of single-antenna radar based oil incomplete 1D range data. J Syst Eng Electron 22(3):412–420

    Google Scholar 

  29. Wang Y, Jiang Y (2011) Inverse synthetic aperture radar imaging of maneuvering target based on the product generalized cubic phase function. IEEE Geosci Remote Sens Lett 8(5):958–962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Di.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, G., Su, F. & Xu, X. Cross-range scaling of inverse synthetic aperture radar images with complex moving targets based on parameter estimation. J Supercomput 76, 4095–4116 (2020). https://doi.org/10.1007/s11227-017-2209-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2209-1

Keywords