Abstract
Deep learning techniques based on Convolutional Neural Networks (CNNs) are extensively used for the classification of hyperspectral images. These techniques present high computational cost. In this paper, a GPU (Graphics Processing Unit) implementation of a spatial-spectral supervised classification scheme based on CNNs and applied to remote sensing datasets is presented. In particular, two deep learning libraries, Caffe and CuDNN, are used and compared. In order to achieve an efficient GPU projection, different techniques and optimizations have been applied. The implemented scheme comprises Principal Component Analysis (PCA) to extract the main features, a patch extraction around each pixel to take the spatial information into account, one convolutional layer for processing the spectral information, and fully connected layers to perform the classification. To improve the initial GPU implementation accuracy, a second convolutional layer has been added. High speedups are obtained together with competitive classification accuracies.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-018-2300-2/MediaObjects/11227_2018_2300_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-018-2300-2/MediaObjects/11227_2018_2300_Fig2_HTML.gif)
Similar content being viewed by others
References
Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675
Yue J, Zhao W, Mao S, Liu H (2015) Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens Lett 6(6):468–477
Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sens https://doi.org/10.1155/2015/258619
Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp 4959–4962
Zhao W, Du S (2016) Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554
Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251
Li Y, Zhang H, Shen Q (2017) Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens 9(1):67
Christophe E, Michel J, Inglada J (2011) Remote sensing processing: from multicore to GPU. IEEE J Sel Top Appl Earth Obs Remote Sens 4(3):643–652
Plaza A, Du Q, Chang Y, King RL (2011) High performance computing for hyperspectral remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens 4(3):528–544
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional Architecture for Fast Feature Embedding, arXiv preprint arXiv:1408.5093
Nvidia (2017) cuDNN. https://developer.nvidia.com/cudnn. Accessed 22 Mar 2017
Aptoula E, Ozdemir MC, Yanikoglu B (2016) Deep learning with attribute profiles for hyperspectral image classification. IEEE Geosci Remote Sens Lett 13(12):1970–1974
Kirk David B, Wen-mei W. Hwu (2016) Programming Massively Parallel Processors A Hands-on Approach, Morgan Kaufmann
Nvidia (2016) Whitepaper: NVIDIA Tesla P100. http://www.nvidia.com/object/tesla-p100.html. Accessed 2 Dec 2016
Nvidia (2015) CULA Tools. http://www.culatools.com/. Accessed 13 Jan 2015
MAGMA (2015) Matrix Algebra on GPU and Multicore Architectures. http://icl.cs.utk.edu/projectsfiles/magma/doxygen/. Accessed 13 Jan 2017
Nvidia (2015) CUDA Toolkit Documentation: CUBLAS. http://docs.nvidia.com/cuda/cublas/. Accessed 11 Jan 2017
Garea AS, Heras DB, Argüello F (2016) GPU classification of remote sensing images using kernel ELM and extended morphological profiles. Int J Remote Sens 37(24):5918–5935
Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675
Acknowledgements
This work was supported in part by the Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia) [Grant Numbers GRC2014/008 and ED431G/08] and Ministry of Education, Culture and Sport, Government of Spain [Grant Numbers TIN2013-41129-P and TIN2016-76373-P]. These grants are co-funded by the European Union (European Regional Development Fund - ERDF).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Garea, A.S., Heras, D.B. & Argüello, F. Caffe CNN-based classification of hyperspectral images on GPU. J Supercomput 75, 1065–1077 (2019). https://doi.org/10.1007/s11227-018-2300-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-018-2300-2