Skip to main content
Log in

Heterogeneous CPU plus GPU approaches for HEVC

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The high efficiency video coding (HEVC) standard has opened the door to high-quality multimedia contents and new formats such as ultra-high definition as a result of the unceasing demands of the market. This standard is able to outperform prior standards by up to 50% in terms of perceptual video quality, but at the cost of extremely large computational complexities. For this reason, the development of fast coding algorithms is now a requirement to make HEVC an adequate candidate for real-world scenarios. In this regard, this paper proposes a collaborative CPU \(+\) GPU coding architecture for this standard, in which the CPU performs a coarse-grained parallelization of the encoder, while the GPU carries out a fast motion estimation. Given that the GPU algorithm can work together with a wide variety of parallel algorithms, this paper evaluates two of them: tiles, defined in the standard, and slices, already present in previous standards. Results indicate that slices are more adequate in terms of parallel efficiency (10.75\(\times {}\) speedup on average using 12 threads), while tiles achieve better coding efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ISO/IEC, ITU-T (2017) Advanced video coding for generic audiovisual services. ITU-T Recommendation H.264 and ISO/IEC 14496-10 (version 12)

  2. ISO/IEC, ITU-T (2016) High efficiency video coding (HEVC). ITU-T Recommendation H.265 and ISO/IEC 23008-2 (version 4)

  3. Sullivan GJ, Ohm JR, Han WJ, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668. https://doi.org/10.1109/TCSVT.2012.2221191

    Article  Google Scholar 

  4. Ohm JR, Sullivan GJ, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans Circuits Syst Video Technol 22(12):1669–1684. https://doi.org/10.1109/TCSVT.2012.2221192

    Article  Google Scholar 

  5. Fuldseth A, Horowitz M, Xu S, Zhou M (2011) Tiles. Technical Report JCTVC-E408

  6. Henry F, Pateux S (2011) Wavefront parallel processing. Technical Report JCTVC-E196

  7. Bossen F, Bross B, Suhring K, Flynn D (2012) HEVC complexity and implementation analysis. IEEE Trans Circuits Syst Video Technol 22(12):1685–1696. https://doi.org/10.1109/TCSVT.2012.2221255

    Article  Google Scholar 

  8. Cebrián-Márquez G, Martínez JL, Cuenca P (2017) Heterogeneous CPU plus GPU tile-based approach for HEVC. In: Proceedings of the 17th International Conference on Mathematical Methods in Science and Engineering (CMMSE), vol 2, pp 534–545

  9. Misra K, Segall A, Horowitz M, Xu S, Fuldseth A, Zhou M (2013) An overview of tiles in HEVC. IEEE J Sel Top Signal Process 7(6):969–977. https://doi.org/10.1109/JSTSP.2013.2271451

    Article  Google Scholar 

  10. Fernández DG, Del Barrio AA, Botella G, García C (2017) Fast and effective CU size decision based on spatial and temporal homogeneity detection. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4503-6. (in press)

  11. Fernández DG, Del Barrio AA, Botella G, García C, Prieto M, Hermida R (2018) Complexity reduction in the HEVC/H265 standard based on smooth region classification. Digit Signal Process 73:24–39. https://doi.org/10.1016/j.dsp.2017.11.001

    Article  Google Scholar 

  12. Cebrián-Márquez G, Martínez JL, Cuenca P (2017b) Inter and intra pre-analysis algorithm for HEVC. J Supercomput 73(1):414–432. https://doi.org/10.1007/s11227-016-1882-9

    Article  Google Scholar 

  13. Chi CC, Álvarez-Mesa M, Juurlink B, Clare G, Henry F, Pateux S, Schierl T (2012) Parallel scalability and efficiency of HEVC parallelization approaches. IEEE Trans Circuits Syst Video Technol 22(12):1827–1838. https://doi.org/10.1109/TCSVT.2012.2223056

    Article  Google Scholar 

  14. Chi CC, Álvarez-Mesa M, Lucas J, Juurlink B, Schierl T (2013) Parallel HEVC decoding on multi- and many-core architectures. J Sign Process Syst 71(3):247–260. https://doi.org/10.1007/s11265-012-0714-2

    Article  Google Scholar 

  15. Yu Q, Zhao L, Ma S (2012) Parallel AMVP candidate list construction for HEVC. In: IEEE Visual Communications and Image Processing (VCIP). https://doi.org/10.1109/VCIP.2012.6410775

  16. Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089. https://doi.org/10.1109/TCSVT.2014.2335852

    Article  Google Scholar 

  17. Wang X, Song L, Chen M, Yang J (2013) Paralleling variable block size motion estimation of HEVC on CPU plus GPU platform. In: IEEE International Conference on Multimedia and Expo Workshops (ICMEW). https://doi.org/10.1109/ICMEW.2013.6618412

  18. Radicke S, Hahn JU, Grecos C, Wang Q (2014) A highly-parallel approach on motion estimation for high efficiency video coding (HEVC). In: IEEE International Conference on Consumer Electronics (ICCE), pp 187–188. https://doi.org/10.1109/ICCE.2014.6775965

  19. Radicke S, Hahn JU, Wang Q, Grecos C (2014b) Bi-predictive motion estimation for HEVC on a graphics processing unit (GPU). IEEE Trans Consum Electron 60(4):728–736. https://doi.org/10.1109/TCE.2014.7027349

    Article  Google Scholar 

  20. ISO/IEC, ITU-T (2016) HEVC test model (HM) reference software. https://hevc.hhi.fraunhofer.de/

  21. Bossen F (2013) Common test conditions and software reference configurations. Technical Report JCTVC-L1100

  22. Bjøntegaard G (2008) Improvements of the BD-PSNR model. Technical Report VCEG-AI11, 35th VCEG Meeting, ITU-T SG16 Q6

Download references

Acknowledgements

This work was jointly supported by the Spanish Ministry of Economy and Competitiveness and the European Commission (FEDER funds) under the Projects TIN2015-66972-C5-2-R and TIN2015-66972-C5-4-R, and by the Spanish Ministry of Education, Culture and Sports under the Grant FPU13/04601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Cebrián-Márquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cebrián-Márquez, G., Galiano, V., Migallón, H. et al. Heterogeneous CPU plus GPU approaches for HEVC. J Supercomput 75, 1215–1226 (2019). https://doi.org/10.1007/s11227-018-2353-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2353-2

Keywords