Skip to main content
Log in

A novel fault-tolerant multiplexer in quantum-dot cellular automata technology

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

A Correction to this article was published on 30 April 2019

This article has been updated

Abstract

Quantum-dot cellular automaton (QCA) has emerged as one of the best alternatives to CMOS technology in nanoscale. In spite of the potential advantages of QCA technology over CMOS, QCA circuits often suffer from various types of manufacturing defects and are therefore prone to fault. Hence, the design of fault-tolerant circuits in QCA technology is considered a necessity. The implementation of multiplexer circuits in QCA technology has been of great interest to researchers due to its widespread use in memory circuits and ALUs. In most of the multiplexer circuits presented in QCA, the problem of fault-tolerant is ignored. In this paper, a novel fault-tolerant three-input majority gate is initially proposed. The proposed structure has been investigated against all kinds of cell omission, extra cell deposition, and cell displacement defects. The simulation results are verified by QCA Designer 2.0.3, and it showed that it is 100, 84.98, and 100% tolerant to single-cell omission, double-cell omission, and extra cell deposition, respectively. In addition, the proposed structure shows that it is robust against cell displacement defects. Moreover, physical investigations are provided in order to confirm the function of the proposed fault-tolerant structure. Finally, using the proposed structure, a novel single-layer 2:1 multiplexer is presented. The results of comparisons indicate that the proposed designs are more reliable than the existing designs. Furthermore, QCAPro power estimator tool is employed to estimate the energy dissipation of the proposed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

  • 30 April 2019

    The spelling of the city Dezful was incorrect in the author affiliation. The correct affiliation is given below.

  • 30 April 2019

    The spelling of the city Dezful was incorrect in the author affiliation. The correct affiliation is given below.

  • 30 April 2019

    The spelling of the city Dezful was incorrect in the author affiliation. The correct affiliation is given below.

References

  1. Wilson M et al (2002) Nanotechnology: basic science and emerging technologies. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Toth G, Lent CS (1999) Quasiadiabatic switching for metal-island quantum-dot cellular automata. J Appl Phys 85(5):2977–2984

    Article  Google Scholar 

  3. Lent CS et al (1993) Quantum cellular automata. Nanotechnology 4(1):49

    Article  Google Scholar 

  4. Compano R, Molenkamp L, Paul D (2000) Roadmap for nanoelectronics. European Commission IST Programme, Future and Emerging Technologies

  5. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557

    Article  Google Scholar 

  6. Seyedi S, Navimipour NJ (2018) Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun Netw 16:1–9

    Article  MATH  Google Scholar 

  7. Heikalabad SR, Asfestani MN, Hosseinzadeh M (2018) A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 74(5):1994–2005

    Article  Google Scholar 

  8. Safavi A, Mosleh M (2016) Presenting a new efficient QCA full adder based on suggested MV32 gate. Int J Nanosci Nanotechnol 12(1):55–69

    Google Scholar 

  9. Kumar D, Mitra D (2016) Design of a practical fault-tolerant adder in QCA. Microelectron J 53:90–104

    Article  Google Scholar 

  10. Bandani Sousan H-A, Mosleh M, Setayeshi S (2015) Designing and implementing a fast and robust full-adder in quantum-dot cellular automata (QCA) technology. J Adv Comput Res 6(1):27–45

    Google Scholar 

  11. Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504

    Article  Google Scholar 

  12. Navi K et al (2010) A new quantum-dot cellular automata full-adder. Microelectron J 41(12):820–826

    Article  Google Scholar 

  13. Cho H, Swartzlander EE (2007) Adder designs and analyses for quantum-dot cellular automata. IEEE Trans Nanotechnol 6(3):374–383

    Article  Google Scholar 

  14. Faraji H, Mosleh M (2018) A fast wallace-based parallel multiplier in quantum-dot cellular automata. Int J Nano Dimens 9(1):68–78

    Google Scholar 

  15. Pudi V, Sridharan K (2013) Efficient design of Baugh-Wooley multiplier in quantum-dot cellular automata. In: 13th IEEE Conference on Nanotechnology (IEEE-NANO), 2013. IEEE

  16. Kim S-W (2011) Design of parallel multipliers and dividers in quantum-dot cellular automata

  17. Cho H, Swartzlander EE Jr (2009) Adder and multiplier design in quantum-dot cellular automata. IEEE Trans Comput 58(6):721–727

    Article  MathSciNet  MATH  Google Scholar 

  18. Cho H (2006) Adder and multiplier design and analysis in quantum-dot cellular automata

  19. Sayedsalehi S et al (2015) Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf Sci 311:86–101

    Article  MathSciNet  Google Scholar 

  20. Kong I, Kim S-W, Swartzlander EE (2014) Design of Goldschmidt dividers with quantum-dot cellular automata. IEEE Trans Comput 63(10):2620–2625

    Article  MathSciNet  MATH  Google Scholar 

  21. Kong I, Swartzlander EE, Kim S-W (2009) Design of a Goldschmidt iterative divider for quantum-dot cellular automata. In: IEEE/ACM International Symposium on Nanoscale Architectures, 2009. NANOARCH’09. IEEE

  22. Chaharlang J, Mosleh M (2017) An overview on RAM memories in QCA technology. Majlesi J Electr Eng 11(2):9

    Google Scholar 

  23. Sadoghifar A, Heikalabad SR (2018) A content-addressable memory structure using quantum cells in nanotechnology with energy dissipation analysis. Phys B 537:202–206

    Article  Google Scholar 

  24. Asfestani MN, Heikalabad SR (2017) A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys B 512:91–99

    Article  Google Scholar 

  25. Heikalabad SR, Navin AH, Hosseinzadeh M (2016) Content addressable memory cell in quantum-dot cellular automata. Microelectron Eng 163:140–150

    Article  Google Scholar 

  26. Heikalabad SR et al (2015) Midpoint memory: a special memory structure for data-oriented models implementation. J Circuits Syst Comput 24(05):1550063

    Article  Google Scholar 

  27. Tahoori MB et al (2004) Defects and faults in quantum cellular automata at nano scale. In: VLSI Test Symposium, 2004. Proceedings. 22nd IEEE. IEEE

  28. Momenzadeh M et al (2004) Quantum cellular automata: new defects and faults for new devices. In: Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International. IEEE

  29. Huang J, Momenzadeh M, Lombardi F (2007) On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J Electron Test 23(2):163–174

    Article  Google Scholar 

  30. Sen B et al (2014) Efficient design of fault tolerant tiles in QCA. In: India Conference (INDICON), 2014 Annual IEEE. IEEE

  31. Sen B et al (2016) On the reliability of majority logic structure in quantum-dot cellular automata. Microelectron J 47:7–18

    Article  Google Scholar 

  32. Sen B et al (2016) Towards the design of hybrid QCA tiles targeting high fault tolerance. J Comput Electron 15(2):429–445

    Article  Google Scholar 

  33. Du H et al (2016) Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J Comput Electron 15(4):1484–1497

    Article  Google Scholar 

  34. Sun M et al (2018) The fundamental primitives with fault-tolerance in quantum-dot cellular automata. J Electron Test 34(2):109–122

    Article  Google Scholar 

  35. Wang X et al (2018) Design and comparison of new fault-tolerant majority gate based on quantum-dot cellular automata. J Semicond 39(8):085001-1–085001-8

    Google Scholar 

  36. Farazkish R (2018) Novel efficient fault-tolerant full-adder for quantum-dot cellular automata. Int J Nano Dimens 9(1):58–67

    Google Scholar 

  37. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825

    Article  Google Scholar 

  38. Walus K et al (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31

    Article  Google Scholar 

  39. Halloun IA, Hestenes D (1985) Common sense concepts about motion. Am J Phys 53(11):1056–1065

    Article  Google Scholar 

  40. McDermott LC (1984) Research on conceptual understanding in mechanics. Phys Today 37:24–32

    Article  Google Scholar 

  41. Halliday D, Resnick R, Walker J (2011) Fundamentals of physics, 9th edn. Wiley, Hoboken, NJ

    MATH  Google Scholar 

  42. Momenzadeh M, Ottavi M, Lombardi F (2005) Modeling QCA defects at molecular-level in combinational circuits. In: 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005. IEEE

  43. Srivastava S et al (2011) QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE

  44. Ahmad F (2018) An optimal design of QCA based 2n: 1/1: 2n multiplexer/demultiplexer and its efficient digital logic realization. Microprocess Microsyst 56:64–75

    Article  Google Scholar 

  45. Rashidi H, Rezai A, Soltany S (2016) High-performance multiplexer architecture for quantum-dot cellular automata. J Comput Electron 15(3):968–981

    Article  Google Scholar 

  46. Chabi AM et al (2014) Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. International scholarly research notices

  47. Sen B et al (2013) Multilayer design of QCA multiplexer. In: India Conference (INDICON), 2013 Annual IEEE. IEEE

  48. Roohi A et al (2011) A novel architecture for quantum-dot cellular automata multiplexer. Int J Comput Sci Issues 8(1):55–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mosleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadpour, SS., Mosleh, M. A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput 74, 4696–4716 (2018). https://doi.org/10.1007/s11227-018-2464-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2464-9

Keywords

Navigation