Skip to main content
Log in

Novel designs of full adder in quantum-dot cellular automata technology

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In the digital design area, quantum-dot cellular automata (QCA) has become a promising alternative to the CMOS technology. As a basic unit in digital arithmetic circuits, the full adder has been extensively studied in the development of QCA technology. This paper presents two novel full adder implementations using QCA, which outperform other designs with fewer cells, smaller areas, shorter latency and lower cost. The two full adders share many properties in common and differ only in cell numbers. Concretely speaking, a latency of 0.75 clock cycle, area of 0.01 μm2 and cost weighted 0.0056 is implemented using only 28 and 31 normal cells, respectively. To illustrate the superiority of our design in complex structures, ripple carry adder circuits of 4-bit, 8-bit and 16-bit size have been implemented using the proposed 1-bit full adder. Simulation results show that the proposed design also has good stability and scalability in different circuit size, resulting in significant improvements in terms of number of cells, area, cost compared to designs in other studies, while maintaining an equally well clock latency with the best previous one. The proposed designs in this paper have been functionally verified with the QCADesigner tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Lent CST, Douglas P, Bernstein Gary H (1993) Quantum cellular automata. Nanotechnology 4:49–57

    Article  Google Scholar 

  2. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557. https://doi.org/10.1109/5.573740

    Article  Google Scholar 

  3. Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Science 277(5328):928–930

    Article  Google Scholar 

  4. Amlani I, Orlov AO, Kummamuru RK, Bernstein GH (2000) Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl Phys Lett 77(5):738–740

    Article  Google Scholar 

  5. Rumi Z, Walus K, Wei W, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450. https://doi.org/10.1109/TNANO.2004.834177

    Article  Google Scholar 

  6. Navi K, Sayedsalehi S, Farazkish R, Azghadi MR (2010) Five-input majority gate, a new device for quantum-dot cellular automata. J Comput Theor Nanosci 7(8):1–8

    Article  Google Scholar 

  7. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825

    Article  Google Scholar 

  8. Gin A, Tougaw PD, Williams S (1999) An alternative geometry for quantum-dot cellular automata. J Appl Phys 85(12):8281–8286

    Article  Google Scholar 

  9. Wang W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003, vol 462, pp 461–464

  10. Hanninen I, Takala J (2007) Robust adders based on quantum-dot cellular automata. IEEE Int Conf Asap. https://doi.org/10.1109/asap.2007.4459295

    Google Scholar 

  11. Mohammadi M, Mohammadi M, Gorgin S (2016) An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron J 50(Supplement C):35–43. https://doi.org/10.1016/j.mejo.2016.02.004

    Article  Google Scholar 

  12. Labrado C, Thapliyal H (2016) Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron Lett 52(6):464–465. https://doi.org/10.1049/el.2015.3834

    Article  Google Scholar 

  13. Seyedi S, Navimipour NJ (2018) An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik Int J Light Electron Opt 158:243–256

    Article  MATH  Google Scholar 

  14. Sayedsalehi SMMH, Navi K (2011) Novel efficient adder circuits for quantum-dot cellular automata. J Comput Theor Nanosci 8(9):1769–1775

    Article  Google Scholar 

  15. Sarmadi S, Sayedsalehi S, Fartash M, Angizi S (2015) A structured ultra-dense QCA one-bit full-adder cell. Quantum Matter 4(1):125–130

    Google Scholar 

  16. Liu W, Lu L, Neill MO, Swartzlander EE (2011) Design rules for quantum-dot cellular automata. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 15–18 May 2011, pp 2361–2364. https://doi.org/10.1109/iscas.2011.5938077

  17. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31. https://doi.org/10.1109/TNANO.2003.820815

    Article  Google Scholar 

  18. Cho H, Swartzlander EE (2007) Adder designs and analyses for quantum-dot cellular automata. IEEE Trans Nanotechnol 6(3):374–383. https://doi.org/10.1109/TNANO.2007.894839

    Article  Google Scholar 

  19. Heikalabad SR, Asfestani MN, Hosseinzadeh M (2017) A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput. https://doi.org/10.1007/s11227-017-2206-4

    Google Scholar 

  20. Hashemi S, Tehrani MA, Navi K (2012) An efficient quantum-dot cellular automata full-adder. Sci Res Essays 7(2):177–189

    Google Scholar 

  21. Navi K, Farazkish R, Sayedsalehi S, Rahimi Azghadi M (2010) A new quantum-dot cellular automata full-adder. Microelectron J 41(12):820–826. https://doi.org/10.1016/j.mejo.2010.07.003

    Article  Google Scholar 

  22. Hänninen I, Takala J (2010) Binary adders on quantum-dot cellular automata. J Signal Process Syst 58(1):87–103

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge National Natural Science Foundation of China (No. 61271122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xie, G. Novel designs of full adder in quantum-dot cellular automata technology. J Supercomput 74, 4798–4816 (2018). https://doi.org/10.1007/s11227-018-2481-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2481-8

Keywords

Navigation