Skip to main content

Advertisement

Log in

Parallel simulation model for heat and moisture transfer of clothed human body

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The heat and moisture transfer performance in clothed human body affects human life quality (e.g., comfort and health) directly. Accurate modeling and highly efficient simulation of the heat and moisture transfer mechanisms in clothed human body is helpful to enhance the human life quality. In this paper, we first describe a heat and moisture transfer simulation model of clothed human body, which comprises the George Fu’s human thermal physiological model and a 3D heat and moisture transfer model in clothing, and the thermoregulation behaviors as well as the heat transfer mechanisms are taken into consideration. Then according to the physiological and geometrical features of human body, a parallel algorithm for the heat and moisture transfer simulation in clothed human body is proposed. The SPMD framework has been utilized for data parallel. At last, case studies with different environment scenes are presented. The visual simulated results are displayed, and the parallel performance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\rho _{\mathrm{t}}\) :

Tissue density

\(\rho _{\mathrm{b}}\) :

Blood density

\(\mu \) :

Blood viscosity

\(\varepsilon \) :

Porosity of the fabric

\(\varepsilon _{\mathrm{a}}\) :

Volume fraction of water vapor

\(\varepsilon _{\mathrm{l}}\) :

Volume fraction of liquid phase

\(\varepsilon _{\mathrm{f}}\) :

Volume fraction of fibers

\(\lambda _{\mathrm{v}}\) :

Heat of sorption or desorption of vapor by fibers

\(\lambda _{\mathrm{l}}\) :

Heat of sorption or desorption of liquid by fibers

\(\varGamma _{\mathrm{f}}\) :

Effective sorption rate of the moisture

\(\varGamma _{\mathrm{lg}}\) :

Evaporation/condensation rate of the liquid/vapor

\(\varGamma _{\mathrm{R}}\) :

Heat radiation

\(\tau _{\mathrm{a}}\) :

Effective tortuosity of the fabric for water vapor diffusion

\(\tau _\mathrm{l}\) :

Effective tortuosity of the fabric for liquid water diffusion

\(\xi _1\) :

Proportions of moisture sorption at fiber surface covered by water vapor

\(\xi _2\) :

Proportions of moisture sorption at fiber surface covered by liquid water

\(\rho _\mathrm{l}\) :

Density of the liquid water

\(\kappa _1\) :

Transfer proportions of water vapor

\(\kappa _2\) :

Transfer proportions of liquid water

\(c_\mathrm{t}\) :

Heat capacity of the tissue

\(c_{\mathrm{b,p}}\) :

Heat capacity of the blood

\(q_\mathrm{b}\) :

Heat carried into the tissue by capillary blood

\(q_\mathrm{m}\) :

Metabolic heat generation

\(q_\mathrm{a}\) :

Heat transfer between tissue and arterial blood flow

\(q_\mathrm{v}\) :

Heat transfer between tissue and venous blood flow

\(q_{\mathrm{bd}}\) :

Heat transfer between tissue and blood, it equals \(q_\mathrm{a}\) or \(q_\mathrm{v}\)

\(q_{\mathrm{res}}\) :

Heat transfer between tissue and respiratory tract

\(m_{\mathrm{res}}\) :

Temperature of the fabric

\(r_0\) :

Radius of blood vessel

\(v_{\mathrm{bl}}\) :

Mean blood velocity in the blood vessel

\(v_{\mathrm{res}}\) :

Air velocity in the respiratory tract

\(D_{\mathrm{ab}}\) :

Temperature of the fabric

\(A_\mathrm{b}\) :

Cross-sectional area of large blood vessel

\(A_{\mathrm{res}}\) :

Cross-sectional area of the respiratory tract

\(T_\mathrm{t}\) :

Tissue temperature

\(T_\mathrm{b}\) :

Blood temperature

P :

Blood pressure

\(W_{\mathrm{air}}\) :

Humidity ratio for the air in the respiratory tract

\(C_\mathrm{a}\) :

Water vapor concentration in the air filling the inter-fiber void space

\(C^*_\mathrm{a}\) :

Saturated water vapor concentration in the air filling the inter-fiber void space

\(C_\mathrm{v}\) :

Volumetric heat capacity of the fabric

\(D_\mathrm{a}\) :

Diffusion coefficient of water vapor in the fibers of the fabric

\(D_\mathrm{l}\) :

Diffusion coefficient of liquid water in the fibers of the fabric

K :

Effective thermal conductivity of the fabric

\(T_\mathrm{f}\) :

Temperature of the fabric

\(P_\mathrm{m}\) :

Proportions of moisture vapor heat loss from skin

\(P_\mathrm{h}\) :

Proportions of dry heat loss from skin

\(H_\mathrm{t}\) :

Heat conduction coefficient of air

\(H_\mathrm{m}\) :

Mass transfer coefficient

\(E_\mathrm{t}\) :

The evaporation heat loss of body tissue

References

  1. Xu Q, Wang Z, Wang F, Li J (2018) Thermal comfort research on human CT data modeling. Multimed Tools Appl 77(5):6311–6326

    Article  MathSciNet  Google Scholar 

  2. Givoni B, Goldman RF (1972) Predicting rectal temperature response to work, environment, and clothing. J Appl Physiol 32(6):812–822

    Article  Google Scholar 

  3. Machle W, Hatch TF (1947) Heat: man’s exchanges and physiological responses. Physiol Rev 27(2):200–227

    Article  Google Scholar 

  4. McK Kerslake D, Waddell JL (1958) The heat exchanges of wet skin. J Physiol 141(1):156–163

    Article  Google Scholar 

  5. Gagge AP (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–262

    Google Scholar 

  6. Gagge AP, Fobelets AP, Berglund L (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans (US) 92(CONF–8606125):709–731

    Google Scholar 

  7. Stolwijk JAJ, Hardy JD (1966) Temperature regulation in man—theoretical study. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 291(2):129–162

    Article  Google Scholar 

  8. Crosbie RJ, Hardy JD, Fessenden E (1961) Electrical analog simulation of temperature regulation in man. IRE Trans Bio-Med Electron 8(4):245–252

    Article  Google Scholar 

  9. Gordon RG (1974) The response of a human temperature regulatory system model in the cold. Ph.D. thesis, University of California, Santa Barbara

  10. Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65 mn) and radiation models and computational fluid dynamics (CFD). Energy Build 34(6):637–646

    Article  Google Scholar 

  11. Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36(6):691–699

    Article  Google Scholar 

  12. Smith CE (1991) A transient, three-dimensional model of the human thermal system. Ph.D. thesis, Kansas State University

  13. Fu G (1995) A transient, 3-D mathematical thermal model for the clothed human. Ph.D. thesis, Kansas State University

  14. Salloum M, Ghaddar N, Ghali K (2007) A new transient bioheat model of the human body and its integration to clothing models. Int J Therm Sci 46(4):371–384

    Article  Google Scholar 

  15. Ferreira MS, Yanagihara JI (2009) A transient three-dimensional heat transfer model of the human body. Int Commun Heat Mass Transf 36(7):718–724

    Article  Google Scholar 

  16. Al-Othmani M, Ghaddar N, Ghali K (2008) A multi-segmented human bioheat model for transient and asymmetric radiative environments. Int J Heat Mass Transf 51(23):5522–5533

    Article  MATH  Google Scholar 

  17. Farnworth B (1983) Mechanisms of heat flow through clothing insulation. Text Res J 53(12):717–725

    Article  Google Scholar 

  18. Hsieh WH, Lu SF (2000) Heat-transfer analysis and thermal dispersion in thermally-developing region of a sintered porous metal channel. Int J Heat Mass Transf 43(16):3001–3011

    Article  MATH  Google Scholar 

  19. Wang J, Sun W (2014) Heat and sweat transport in fibrous media with radiation. Eur J Appl Math 25(03):307–327

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohaqeqi M, Kargahi M (2015) Thermal analysis of stochastic dvfs-enabled multicore real-time systems. J Supercomput 71(12):4594–4622

    Article  Google Scholar 

  21. Henry PSH, Pickard RH (1939) Diffusion in absorbing media. Proc R Soc Lond 171(945):215–241

    Article  Google Scholar 

  22. Li Y, Holcombe BV (1992) A two-stage sorption model of the coupled diffusion of moisture and heat in wool fabrics. Text Res J 62(4):211–217

    Article  Google Scholar 

  23. Li Y, Luo ZX (2000) Physical mechanisms of moisture diffusion into hygroscopic fabrics during humidity transients. J Text Inst 91(2):302–316

    Article  Google Scholar 

  24. Motakef S, El-Masri MA (1986) Simultaneous heat and mass transfer with phase change in a porous slab. Int J Heat Mass Transf 29(10):1503–1512

    Article  Google Scholar 

  25. Huang H, Ye C, Sun W (2008) Moisture transport in fibrous clothing assemblies. J Eng Math 61(1):35–54

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang Z, Li Y, Zhu QY, Luo ZX (2003) Radiation and conduction heat transfer coupled with liquid water transfer, moisture sorption, and condensation in porous polymer materials. J Appl Polym Sci 89(10):2780–2790

    Article  Google Scholar 

  27. Qingzhen X, Luo X (2006) Dynamic thermal comfort numerical simulation model on 3D garment cad. Appl Math Comput 182(1):106–118

    MathSciNet  MATH  Google Scholar 

  28. Lin G, Meng S, Wang R, Luo X, Li Y (2011) The heat and moisture transfer balance theory of garment simulation. J Comput Appl Math 236(5):980–987

    Article  MathSciNet  MATH  Google Scholar 

  29. Li F, Li Y, Wang Y (2013) A 3D finite element thermal model for clothed human body. J Fiber Bioeng Inform 6(2):149–160

    Article  Google Scholar 

  30. Luo X, Qingzhen X (2006) Fourth-order algorithm for solving 2D transient heat and moisture transfer simulation through fabric. Appl Math Comput 182(2):1542–1555

    MathSciNet  MATH  Google Scholar 

  31. Hang XD, Sun W, Ye C (2012) Finite volume solution of heat and moisture transfer through three-dimensional textile materials. Comput Fluids 57:25–39

    Article  MathSciNet  MATH  Google Scholar 

  32. Yi L, Aihua M, Ruomei W, Xiaonan L, Zhong W, Wenbang H, Liya Z, Yubei L (2006) P-smart—virtual system for clothing thermal functional design. Comput Aided Des 38(7):726–739

    Article  Google Scholar 

  33. Mao A, Luo J, Li Y, Luo X, Wang R (2011) A multi-disciplinary strategy for computer-aided clothing thermal engineering design. Comput Aided Des 43(12):1854–1869

    Article  Google Scholar 

  34. Teng Y (2014) Multi-dimensional CAD system for clothing thermal functional design. Ph.D. thesis, The Hong Kong Polytechnic University

  35. Artés T, Cencerrado A, Cortés A, Margalef T (2015) Enhancing computational efficiency on forest fire forecasting by time-aware genetic algorithms. J Supercomput 71(5):1869–1881

    Article  Google Scholar 

  36. Chaudhary V, Hase WL, Jiang H, Sun L, Thaker D (2004) Experiments with parallelizing tribology simulations. J Supercomput 28(3):323–343

    Article  MATH  Google Scholar 

  37. Elmroth E, Ding C, Wu YS (2001) High performance computations for large scale simulations of subsurface multiphase fluid and heat flow. J Supercomput 18(3):235–258

    Article  MATH  Google Scholar 

  38. Grunberg M, Genaud S, Mongenet C (2004) Seismic ray-tracing and earth mesh modeling on various parallel architectures. J Supercomput 29(1):27–44

    Article  Google Scholar 

  39. Jin S, Dang G, Ling Y, Wang Z, Liu X (2001) Design and implementation of yh high performance distributed simulation system. J Comput Res Dev 4:009

    Google Scholar 

  40. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D et al (2013) Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–584

    Article  Google Scholar 

  41. Petsc (2014) http://www.mcs.anl.gov/petsc

  42. Bibo T (2012) Performance analysis and optimization of MPI collective operations on multi-core clusters. J Supercomput 60(1):141–162

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments. This research is supported by the National Natural Science Foundation of China (No. 61672547), the Science and Technology Planning Project of Guangdong Province (No. 2015B010129008) and Doctoral Start-up Foundation of Hebei GEO University (No. BQ2018027). Ruomei Wang is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruomei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, N., Huang, Y., Li, J. et al. Parallel simulation model for heat and moisture transfer of clothed human body. J Supercomput 75, 4731–4749 (2019). https://doi.org/10.1007/s11227-019-02754-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-02754-4

Keywords

Navigation