Skip to main content
Log in

Finding the chromatic sums of graphs using a D-Wave quantum computer

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper we demonstrate how to solve the chromatic sum problem using a D-Wave quantum computer. Starting from a BIP (binary integer programming) formulation, we develop a QUBO (quadratic unconstrained binary optimization) formulation of the chromatic sum problem, which is acceptable to a D-Wave quantum computer. Our construction requires nk qubits for a graph of n vertices and upper bound of k colors. Further, we present the experimental results obtained by running several QUBOs on a D-Wave quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kubicka E, Schwenk AJ (1989) An introduction to chromatic sums. In: Proceedings of the 17th Conference on ACM Annual Computer Science Conference, ACM, pp 39–45

  2. Supowit KJ (1987) Finding a maximum planar subset of a set of nets in a channel. IEEE Trans Comput-Aided Des Integr Circ Syst 6(1):93–94

    Article  Google Scholar 

  3. Kubicka EM (2005) Polynomial algorithm for finding chromatic sum for unicyclic and outerplanar graphs. Ars Comb 76:193–202

    MathSciNet  MATH  Google Scholar 

  4. Kubicka E (2004) The chromatic sum of a graph: history and recent developments. Int J Math Math Sci 2004(30):1563–1573

    Article  MathSciNet  MATH  Google Scholar 

  5. Jansen K (1997) The optimum cost chromatic partition problem. In: Italian Conference on Algorithms and Complexity, Springer, pp 25–36

  6. Sen A, Deng H, Guha S (1992) On a graph partition problem with application to VLSI layout. Inf Process Lett 43(2):87–94

    Article  MathSciNet  MATH  Google Scholar 

  7. Kroon LG, Sen A, Deng H, Roy A (1996) The optimal cost chromatic partition problem for trees and interval graphs. In: International Workshop on Graph-Theoretic Concepts in Computer Science, Springer, pp 279–292

  8. Jansen K (2000) Approximation results for the optimum cost chromatic partition problem. J Algorithms 34(1):54–89

    Article  MathSciNet  MATH  Google Scholar 

  9. Erdös P, Kubicka E, Schwenk AJ (1990) Graphs that require many colors to achieve their chromatic sum. Congr Numer 71:17–28

    MathSciNet  MATH  Google Scholar 

  10. Hajiabolhassan H, Mehrabadi ML, Tusserkani R (2005) Tabular graphs and chromatic sum. Discrete Math 304(1–3):11–22

    Article  MathSciNet  MATH  Google Scholar 

  11. Thomassen C, Erdös P, Alavi Y, Malde PJ, Schwenk AJ (1989) Tight bounds on the chromatic sum of a connected graph. J Graph Theory 13(3):353–357

    Article  MathSciNet  MATH  Google Scholar 

  12. Moukrim A, Sghiouer K, Lucet C, Li Y (2010) Lower bounds for the minimal sum coloring problem. Electron Notes Discrete Math 36:663–670

    Article  MATH  Google Scholar 

  13. Li Y, Lucet C, Moukrim A, Sghiouer K (2009) Greedy algorithms for the minimum sum coloring problem. In: Logistique et Transports, pp LT–027

  14. Bouziri H, Jouini M (2010) A tabu search approach for the sum coloring problem. Electron Notes Discrete Math 36:915–922

    Article  MATH  Google Scholar 

  15. Benlic U, Hao JK (2012) A study of breakout local search for the minimum sum coloring problem. In: Asia-Pacific Conference on Simulated Evolution and Learning, Springer, pp 128–137

  16. Douiri SM, Elbernoussi S (2012) A new ant colony optimization algorithm for the lower bound of sum coloring problem. J Math Modell Algorithms 11(2):181–192

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin Y, Hamiez JP, Hao JK (2017) Algorithms for the minimum sum coloring problem: a review. Artif Intell Rev 47(3):367–394

    Article  Google Scholar 

  18. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15):150502

    Article  MathSciNet  Google Scholar 

  19. Van Dam W, Shparlinski IE (2008) Classical and quantum algorithms for exponential congruences. In: Workshop on Quantum Computation, Communication, and Cryptography, Springer, pp 1–10

  20. Mahasinghe A, Wang J (2016) Efficient quantum circuits for Toeplitz and Hankel matrices. J Phys A Math Theor 49(27):275301

    Article  MathSciNet  MATH  Google Scholar 

  21. Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum computation by adiabatic evolution. arXiv preprint arXiv:quant-ph/0001106

  22. Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A, Preda D (2001) A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516):472–475

    Article  MathSciNet  MATH  Google Scholar 

  23. Calude CS, Dinneen MJ, Hua R (2017) QUBO formulations for the graph isomorphism problem and related problems. Theor Comput Sci 701:54–69. https://doi.org/10.1016/j.tcs.2017.04.016

    Article  MathSciNet  MATH  Google Scholar 

  24. Calude CS, Dinneen MJ (2017) Solving the broadcast time problem using a D-Wave quantum computer. In: Advances in Unconventional Computing, Springer, pp 439–453

  25. King J, Yarkoni S, Raymond J, Ozfidan I, King AD, Nevisi MM, Hilton JP, McGeoch CC (2017) Quantum annealing amid local ruggedness and global frustration. Algorithms 5:7

    Google Scholar 

  26. Dinneen MJ, Hua R (2017) Formulating graph covering problems for adiabatic quantum computers. In: Proceedings of the Australasian Computer Science Week Multiconference, ACM, New York, NY, USA, ACSW ’17, pp 18:1–18:10. https://doi.org/10.1145/3014812.3014830

  27. Titiloye O, Crispin A (2011) Quantum annealing of the graph coloring problem. Discrete Optim 8(2):376–384

    Article  MathSciNet  MATH  Google Scholar 

  28. Novotny M, Hobl QL, Hall J, Michielsen K (2016) Spanning tree calculations on D-Wave 2 machines. In: Journal of Physics: Conference Series, IOP Publishing 681(1):012005

  29. Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of Computer Computations, Springer, pp 85–103

  30. Bar-Noy A, Bellare M, Halldórsson MM, Shachnai H, Tamir T (1998) On chromatic sums and distributed resource allocation. Inf Comput 140(2):183–202

    Article  MathSciNet  MATH  Google Scholar 

  31. Nicoloso S, Sarrafzadeh M, Song X (1999) On the sum coloring problem on interval graphs. Algorithmica 23(2):109–126

    Article  MathSciNet  MATH  Google Scholar 

  32. Chandy KM, Misra J (1984) The drinking philosophers problem. ACM Trans Program Lang Syst (TOPLAS) 6(4):632–646

    Article  Google Scholar 

  33. Bar-Noy A, Halldórsson MM, Kortsarz G, Salman R, Shanhnai H (1999) Sum multi-coloring of graphs. In: European Symposium on Algorithms, Springer, pp 390–401

  34. Wikipedia contributors (2019) Integer programming–Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Integer_programming, [Online; accessed 18-Jan-2019]

  35. D-Wave (2013) Programming with QUBOs. Tech. Rep. 09-1002A-B, D-Wave Systems, Inc., Python Release 1.5.1-beta4 (for Mac/Linux)

  36. Calude CS, Calude E, Dinneen MJ (2015) Guest column: adiabatic quantum computing challenges. ACM SIGACT News 46(1):40–61

    Article  MathSciNet  Google Scholar 

  37. Wang Y, Hao JK, Glover F, Lü Z (2013) Solving the minimum sum coloring problem via binary quadratic programming. arXiv preprint arXiv:13045876

  38. Douiri SM, Elbernoussi S (2012) The unconstrained binary quadratic programming for the sum coloring problem. Mod Appl Sci 6(9):26

    Article  MATH  Google Scholar 

  39. Lucas A (2014) Ising formulations of many np problems. Front Phys 2:5

    Article  Google Scholar 

  40. McGeoch CC (2014) Adiabatic quantum computation and quantum annealing: theory and practice. Synth Lect Quantum Comput 5(2):1–93

    Article  Google Scholar 

  41. Mahasinghe A, Dinneen MJ, Liu K (2018) Finding the chromatic sums of graphs using a D-Wave quantum computer. Report CDMTCS-519, Centre for Discrete Mathematics and Theoretical Computer Science, University of Auckland, Auckland, New Zealand, available at https://www.cs.auckland.ac.nz/research/groups/CDMT CS/researchreports

  42. Yang Z, Dinneen MJ (2016) Graph minor embeddings for D-Wave computer architecture. Report CDMTCS-503, Centre for Discrete Mathematics and Theoretical Computer Science, University of Auckland, Auckland, New Zealand

  43. Boothby T, King A, Roy A (2015) Fast clique minor generation in chimera qubit connectivity graphs. Quantum Information Processing 15. https://doi.org/10.1007/s11128-015-1150-6

  44. Yao P, Hua R (2018) Finding maximum-sized native clique embeddings: Implementing and extending the block clique embedding algorithm. Report CDMTCS-523, Centre for Discrete Mathematics and Theoretical Computer Science, University of Auckland, Auckland, New Zealand

  45. Cai J, Macready WG, Roy A (2014) A practical heuristic for finding graph minors. ArXiv e-prints 2014arXiv1406.2741C, 1406.2741

  46. IBM (2017) ILOG CPLEX optimization studio CPLEX user’s manual. https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

  47. Chapuis G, Djidjev H, Hahn G, Rizk G (2018) Finding maximum cliques on the D-Wave quantum annealer. Journal of Signal Processing Systems, pp 1–15

  48. Helmar A, Chiarandini M (2011) A local search heuristic for chromatic sum. In: Proceedings of the 9th Metaheuristics International Conference, vol 1101, pp 161–170

  49. Fowler A (2017) Improved QUBO formulations for D-Wave quantum computing. Master’s thesis, University of Auckland

Download references

Acknowledgements

This work was supported in part by the Quantum Computing Research Initiatives at Lockheed Martin. AM would like to thank André Nies for helpful discussions and also for the funds received through the Department of Computer Science of the University of Auckland and Marsden Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Dinneen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinneen, M.J., Mahasinghe, A. & Liu, K. Finding the chromatic sums of graphs using a D-Wave quantum computer. J Supercomput 75, 4811–4828 (2019). https://doi.org/10.1007/s11227-019-02761-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-02761-5

Keywords

Navigation