Abstract
Grouping individual tourists who have the same or similar tourist routes over the same time period makes it more convenient for the tourists at a low cost by providing transportation means such as regular or occasional tour buses, driver, and tourism guides. In this paper, we propose a mathematical formulation for the tour routes clustering problem and two phases for a sequential pattern algorithm for clustering similar or identical routes according to the tourist routes of individual tourists, with illustrative examples. The first phase is to construct a site by site frequency matrix and prune infrequent tour route patterns from the matrix. The second phase is to perform clustering of the tour routes to determine the tour route using a sequential pattern mining algorithm. We compare and evaluate the performance of our algorithms, i.e., in terms of execution time and memory used. The proposed algorithm is efficient in both runtime and memory usage for the increasing number of transactions.









Similar content being viewed by others
References
Ban J (2013) Sustainable tourism marketing strategies for Chinese tourists. The Seoul Institute 2012-PR−65, pp 1–165
Mohamed SJ (2019) Uber: advantages and disadvantages, budgeting and savings investopedia. https://www.investopedia.com/articles/investing/110614/taxi-industry-pros-cons-uber-and-other-ehail-apps.asp. Accessed 20 July 2019
Deitch R, Ladany SP (2001) Determination of optimal one-period tourist bus tours with identical starting and terminal points. Int J Serv Technol Manag 2:116–129
Vansteenwegen P, Souffriau W, Oudheusden DV (2011) The orienteering problem: a survey. Eur J Oper Res 209:1–10
Tsiligirides T (1984) Heuristic methods applied to orienteering. J Oper Res Soc 35:797–809
Golden BL, Levy L, Vohra R (1987) The orienteering problem. Nav Res Logist 34:307–318
Golden BL, Wang Q, Lin L (1988) A multifaceted heuristic for the orienteering problem. Nav Res Logist 35:359–366
Kantor MG, Rosenwein MB (1992) The orienteering problem with time windows. J Oper Res Soc 43:629–635
Wang W, Sun X, Golden BL, Jia J (1995) Using artificial neural networks to solve the orienteering problem. Ann Oper Res 61:111–120
Ramesh R, Yong-Seok Y, Karwan MH (1992) An optimal algorithm for the orienteering problem. ORSA J Comput 4:155–165
Brilhante IR, Macedo JA, Nardini FM, Perego R, Renso C (2015) On planning sightseeing tours with TripBuilder. Inf Process Manag 51:1–15
Gavalas D, Kasapakis V, Konstantopoulos C, Pantziou Q, Vathis N, Zaroliagis C (2015) The eCOMPASS multimodal tourist tour planner. Expert Syst Appl 42:7303–7316
Majid A, Chen L, Mirza HT, Hussain I, Chen G (2015) A system for mining interesting tourist locations and travel sequences from public geo-tagged photos. Data Knowl Eng 95:66–86
Chen D, Shen X, Karnawat A, Muthiah AS, Farooqui S (2014) An effective approach for mass transit routing and optimization. Contemp Eng Sci 7:405–417
Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and performance improvements. In: Lecture Notes in Computer Science, vol 1057, pp 1–17
Wang J, Han J, Li C (2007) Frequent closed sequence mining without candidate maintenance. IEEE Trans Knowl Data Eng 19(8):1042–1056
Pokou JM, Fournier-Viger, Moghrabi PC (2016) Authorship attribution using small sets of frequent part-of-speech skip-grams. In: Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference. pp 86–91
Schweizer DM, Zehnder H, Wache HF (2015) Using consumer behavior data to reduce energy consumption in smart homes. In: IEEE International Conference on Machine Learning and Applications. pp 1123–1129
Fournier-Viger P, Nkambou R, Nguifo EM (2008) A Knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems. In: Lecture Notes in Computer Science, vol 5317, pp 765–778
Fournier-Viger P, Gueniche T, Tseng VS (2012) Using partially-ordered sequential rules to generate more accurate sequence prediction. In: Lecture Notes in Computer Science, vol 7713, pp 431–442
Ziebarth S, Chounta I, Hoppe H (2015) Resource access patterns in exam preparation activities. In: Lecture Notes in Computer Science, vol 9307, pp 497–502
Kinnebrew JS, Loretz KM, Biswas G (2013) A contextualized, differential sequence mining method to derive students’ learning behavior patterns. J Educ Data Min 5(1):190–219
Bhatt C, Cooper M, Zhao J (2018) SeqSense: video recommendation using topic sequence mining. In: Lecture Notes in Computer Science, vol 10705, pp 252–263
D’Andreagiovanni M, Baiard F, Lipilini J, Ruggieri S, Tonelli F (2018) Sequential pattern mining for ICT risk assessment and prevention. In: Lecture Notes in Computer Science, vol 10729, pp 25–39
Zaki MJ (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn 42(1–2):31–60
Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu MC (2004) Mining sequential patterns by pattern-growth: the prefix span approach. IEEE Trans Knowl Data Eng 16(11):1424–1440
Ayres J, Flannick J, Gehrke J, Yiu T (2002) Sequential pattern mining using a bitmap representation. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp 429–435
Yang Z, Kitsuregawa M (2005) LAPIN-SPAM: an improved algorithm for mining sequential pattern. In: Proceeding of 21st International Conference on Data Engineering Workshops. pp 1222–1222
Fournier-Viger P, Gomariz A, Campos M, Thomas R (2014) Fast vertical mining of sequential patterns using co-occurrence information. Lecture Notes in Computer Science. vol 8443, pp 40–52
Xifeng Y, Jiawei H, Afshar R (2003) CloSpan: mining closed sequential patterns in large data base. In: Proceeding of the SIAM International Conference on Data Mining. pp 166–177
Wang J, Han J (2004) BIDE: efficient mining of frequent closed sequences. In: ICDE ‘04 Proceedings of the 20th International Conference on Data Engineering. pp 79–90
Fournier-Viger P, Wu C-W, Tseng VS (2013) Mining maximal sequential patterns without P. Maintenance. In: The International Conference on Advanced Data Mining and Applications. pp 169–180
Gomariz A, Campos M, Marin R, Goethals B (2003) ClaSP: an efficient algorithm for mining frequent closed sequences. Lecture Notes in Computer Science. vol 7818, pp 50–61
Van HTH, Chau VN, Phung NH (2007) An expanded prefix tree-based mining algorithm for sequential pattern maintenance with deletions. In: Proceedings of 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE). pp 11–16
Fournier-Viger P, Lin JCW, Kiran RU, Koh YS (2017) A survey of sequential pattern mining. Data Sci Pattern Recognit 1(1):54–77
Souri A, Hosseini R (2018) A state-of-the-art survey of malware detection approaches using data mining techniques. Hum Cent Comput Inf Sci 8(1):3. https://doi.org/10.1186/s13673-018-0125-x
Fournier-Viger P, Gomariz A, Gueniche T, Soltani A, Wu C-W, Tseng VS (2014) SPMF: a Java open-source pattern mining library. J Machine Learn Res 15:3569–3573
Acknowledgements
This research was supported by Soongsil University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lee, G.H., Han, H.S. Clustering of tourist routes for individual tourists using sequential pattern mining. J Supercomput 76, 5364–5381 (2020). https://doi.org/10.1007/s11227-019-03010-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-019-03010-5