Skip to main content

Advertisement

Log in

Attribute-aware deep attentive recommendation

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Since the rich semantics of attribute information has become a great supplement to the ratings data in designing recommender systems, fusing attributes information into ratings has shown promising performance for many recommendation tasks. However, the use of attribute information is not easy, because different attributes are often: (1) multi-source, that is, attributes may come from many different fields, (2) unstructured, (3) unbalanced, (4) heterogeneous. In this paper, we explore effective fusion of user-item ratings and item attributes to improve recommendations, we propose an attribute-aware deep attentive recommendation model, which embeds attribute information into the latent semantic space of items through the attention mechanism, forming more accurate item representations. Extensive experiments show that our method is superior to the existing methods on both rating prediction and Top-N Recommendation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu K, Shi X, Natarajan P (2018). “A Sequential Embedding Approach for Item Recommendation with Heterogeneous Attributes.” arXiv preprint arXiv:1805.11008 .2018

  2. Ying R, He R, Chen K, et al. (2018) “Graph convolutional neural networks for web-scale recommender systems.” In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2018: 974–983

  3. Bouadjenek M R, Pacitti E, Servajean M, et al. (2018) “A Distributed Collaborative Filtering Algorithm Using Multiple Data Sources.” arXiv preprint arXiv: 1807.05853, 2018

  4. Gao C, He X, Gan D, et al. (2018) “Learning recommender systems from multi-behavior data.” arXiv preprint arXiv:1809.08161, 2018

  5. Vahidi Ferdousi Z, Colazzo D, Negre E (2018) “CBPF: leveraging context and content information for better recommendations. “arXiv preprint arXiv:1810.00751

  6. Kim D, Park C, Oh J, et al. (2016) “Convolutional matrix factorization for document context-aware recommendation.” In Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016: 233–240

  7. Xue F, He X, Wang X et al (2019) Deep item-based collaborative filtering for top-n recommendation. ACM transactions on Information Syst. (TOIS) 37(3):1–25

    Article  Google Scholar 

  8. Guo H, Tang R, Ye Y, et al. (2018) “DeepFM: An end-to-end wide and deep learning framework for CTR prediction.” arXiv preprint arXiv:1804.04950

  9. Kang W C, Wan M, McAuley J (2018) “Recommendation through mixtures of heterogeneous item relationships.” In Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018: 1143–1152

  10. Li T, Ma Y, Xu J, et al. (2018) “Deep heterogeneous autoencoders for collaborative filtering.” In 2018 IEEE International Conference on Data Mining (ICDM). IEEE: 1164–1169

  11. Lv J, Song B, Guo J et al (2019) Interest-related item similarity model based on multimodal data for top-N recommendation. IEEE Access 7:12809–12821

    Article  Google Scholar 

  12. Su Y, Erfani S M, Zhang R. “MMF: Attribute Interpretable Collaborative Filtering.” In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019: 1–8

  13. Song W, Xiao Z, Wang Y, et al. “Session-based social recommendation via dynamic graph attention networks.” In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. pp. 555–563

  14. Xin X, He X, Zhang Y, et al. (2019) “Relational collaborative filtering: Modeling multiple item relations for recommendation.” In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 125–134

  15. Liu T, Wang Z, Tang J, et al. (2019) “Recommender Systems with Heterogeneous Side Information.” The World Wide Web Conference. pp. 3027–3033.

  16. Wang R, Fu B, Fu G, et al. (2017) “Deep & cross network for ad click predictions.” In Proceedings of the ADKDD'17. ACM 12

  17. Lin G, Liu Y, Zhu W (2017) Speeding up a memetic algorithm for the max-bisection problem [J]. Numer Algebra Control Optimization 5(2):151–168

    MathSciNet  MATH  Google Scholar 

  18. Guo W, Li J, Chen G et al (2015) A PSO-optimized real-time fault-tolerant task allocation algorithm in wireless sensor networks [J]. IEEE Transactions Parallel Distrib Syst 26(12):3236–3249

    Article  Google Scholar 

  19. Li X, Zhu Z, Zhu W (2017) Discrete relaxation method for triple patterning lithography layout decomposition [J]. IEEE Transactions Comput 66(2):285–298

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo L, Shen H (2017) Efficient Approximation Algorithms for the Bounded Flexible Scheduling Problem in Clouds [J]. IEEE Transactions Parallel Distrib Syst 28(12):3511–3520

    Article  Google Scholar 

  21. Cheng Y, Jiang H, Wang F et al (2018) Using high-bandwidth networks efficiently for fast graph computation[J]. IEEE Transactions Parallel Distrib Syst 30(5):1–1

    Google Scholar 

  22. Huang X, Liu G, Guo W et al (2015) Obstacle-avoiding algorithm in X-architecture based on discrete particle swarm optimization for VLSI design [J]. ACM Transactions Des Automation Electron Syst (TODAES) 20(2):24

    Google Scholar 

  23. Huang X, Guo W, Liu G et al (2016) FH-OAOS: a fast four-step heuristic for obstacle-avoiding octilinear steiner tree construction [J]. ACM Transactions on Des Automation Electron Syst (TODAES) 21(3):48

    Google Scholar 

  24. Li X, Zhu W (2017) Two-stage layout decomposition for hybrid E-beam and triple patterning lithography [J]. ACM Transactions Des Automation Electron Syst (TODAES) 23(1):6

    MathSciNet  Google Scholar 

  25. Cheng H, Xiong N, Yang LT et al (2013) Distributed scheduling algorithms for channel access in TDMA wireless mesh networks[J]. J Supercomput 63(2):407–430

    Article  Google Scholar 

  26. Lu Y, Dong R, Smyth B (2018). “Coevolutionary Recommendation Model: Mutual Learning between Ratings and Reviews.” In Proceedings of the World Wide Web Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2018: 773–782

  27. Liu G, Zhang L (2019). “Do Co-purchases Reveal Preferences? Explainable Recommendation with Attribute Networks.” arXiv preprint arXiv:1908.05928, 2019

  28. Cheng H T, Koc L, Harmsen J, et al. (2016) “Wide & deep learning for recommender systems.”In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM: 7–10

  29. Shan Y, Hoens T R, Jiao J, et al. (2016) “Deep Crossing: Web-scale modeling without manually crafted combinatorial features.”In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 255–262

  30. He X, Liao L, Zhang H, et al. (2017) “Neural collaborative filtering.” Proceedings of the 26th international conference on World Wide Web.: 173–182

  31. Guo H, Tang R, Ye Y, et al. (2017) “DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.” arXiv preprint arXiv:1703.04247

  32. He X, Chua T S (2017). “Neural factorization machines for sparse predictive analytics.” Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. 2017: 355–364

  33. Li S, Kawale J, Yun F (2015) Deep collaborative filtering via marginalized denoising auto-encoder. CIKM. ACM 15:811–820

    Article  Google Scholar 

  34. Shi C, Zhang Z, Luo P, Yu PS, Yue Y, Wu B (2015) Semantic path based personalized recommendation on weighted heterogeneous information networks. CIKM. 15:453–462

    Article  Google Scholar 

  35. Wang X, Wang Y (2014). “Improving content-based and hybrid music recommendation using deep learning.”In Proceedings of the 22nd ACM international conference on Multimedia. ACM, 627–636

  36. Okura S, Tagami Y, Ono S, et al. (2017) “Embedding-based News Recommendation for Millions of Users.”In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM 1933–1942

  37. Strub F, Mary J (2015). “Collaborative filtering with stacked denoisingautoencoders and sparse inputs.”In Proc. NIPSWorkshop on Machine Learning for eCommerce, December

  38. Wu Y, DuBois C, Zheng A X, Ester M (2016). “Collaborativedenoising auto-encoders for top-n recommender systems.”In Proc. the 9th ACM International Conference on WebSearch and Data Mining, February pp.153–162

  39. Yue L, Sun XX, Gao WZ et al (2018) Multiple auxiliary information based deep model for collaborative filtering. J Comput Sci Tech 33(4):668–681

    Article  Google Scholar 

  40. Strub F, Gaudel R, Mary J (2016). “Hybrid recommender systembased on autoencoders.”In Proc. the 1st Workshop onDeep Learning for Recommender Systems, September pp.11–16

  41. Mnih A, Salakhutdinov R R (2008). “Probabilistic matrix factorization.”In Advances in neural information processing systems 1257–1264

  42. Wang C, Blei D M (2011). “Collaborative topic modeling for recommending scientific articles.”In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM 448–456

  43. Wang H, Wang N, Yeung D Y (2015). “Collaborative deep learningfor recommender systems.”In Proc. the 21th ACMSIGKDD International Conference on Knowledge Discoveryand Data Mining, August pp.1235–1244

  44. Huang X, Guo W, Liu G et al (2017) MLXR: multi-layer obstacle-avoiding X-architecture Steiner tree construction for VLSI routing [J]. Sci China Information Sci 60(1):19102

    Article  Google Scholar 

  45. Liu G, Guo W, Li R et al (2015) XGRouter: high-quality global router in X-architecture with particle swarm optimization [J]. Frontiers Comput Sci 9(4):576–594

    Article  Google Scholar 

  46. Guo W, Liu G, Chen G et al (2014) A hybrid multi-objective PSO algorithm with local search strategy for VLSI partitioning [J]. Frontiers Comput Sci 8(2):203–216

    Article  MathSciNet  Google Scholar 

  47. Cheng Y, Wang F, Jiang H et al (2018) A communication-reduced and computation-balanced framework for fast graph computation [J]. Frontiers ComputSci 12(5):887–907

    Article  Google Scholar 

  48. Yang D, Liao X, Shen H et al (2017) Relative influence maximization in competitive social networks [J]. Sci China Information Sci 60(10):108101

    Article  Google Scholar 

  49. Wei J, Liao X, Zheng H, et al. Learning from context: A mutual reinforcement model for Chinese microblog opinion retrieval [J]. Frontiers Comput Sci 2017.

  50. Chen X, Li A, Zeng X et al (2015) Runtime model based approach to IoT application development [J]. Frontiers Comput Sci 9(4):540–553

    Article  Google Scholar 

  51. Guo L, Shen H, Zhu W (2017) Efficient approximation algorithms for multi-antennae largest weight data retrieval [J]. IEEE Trans Mob Comput 16(12):3320–3333

    Article  Google Scholar 

  52. Zhang Q, Qiu Q, Guo W et al (2016) A social community detection algorithm based on parallel grey label propagation [J]. Comput Netw 107:133–143

    Article  Google Scholar 

  53. Lin B, Guo W, Xiong N et al (2016) A pretreatment workflow scheduling approach for big data applications in multicloud environments [J]. IEEE Trans Netw Serv Manage 13(3):581–594

    Article  Google Scholar 

  54. Yu Z, Yu Z, Chen Y (2016) Multi-hop mobility prediction [J]. Mobile Netw Appl 21(2):367–374

    Article  Google Scholar 

  55. Yang Y, Zheng X, Tang C (2017) Lightweight distributed secure data management system for health internet of things [J]. J Netw Comput Appl 89:26–37

    Article  Google Scholar 

  56. AreT. Bai, J.-Y. Nie, W. X. Zhao, Y. Zhu, P. Du, J.-R. Wen (2018), “Anattribute-aware neural attentive model for next basket recommendation,”in SIGIR pp. 1201–1204

  57. Can Wang, Chi-Hung Chi, Wei Zhou, Raymond K Wong. 2015. Coupled Interdependent Attribute Analysis on Mixed Data. In AAAI. 1861–1867

  58. P. Nguyen, J. Dines, J. Krasnodebski (2017). “A multi-objective learning to rerank approach to optimize online marketplaces for multiple stakeholders,” CoRR, vol. abs/1708.00651

  59. Qiu H, Liu Y, Guo G, Sun Z, Zhang J, Nguyen HT (2018) Bprh: bayesian personalized ranking for heterogeneous implicit feedback. Inf Sci 453:80–98

    Article  Google Scholar 

  60. Guo G, Qiu H, Tan Z, Liu Y, Ma J, Wang X (2017) Resolving data sparsity by multi-type auxiliary implicit feedback for recommender systems. Knowl Based Syst 138:202–207

    Article  Google Scholar 

  61. J. Ding, G. Yu, X. He, Y. Quan, Y. Li, T.-S. Chua, D. Jin, J. Yu (2018), “Improving implicit recommender systems with view data.” In IJCAI, pp. 3343–3349

  62. C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T.-S. Chua et al.( 2018), “Learning recommender systems from multi-behavior data,” arXiv preprint arXiv: 1809.08161

  63. Q. Xia, P. Jiang, F. Sun, Y. Zhang, X. Wang, Z. Sui (2018), “Modeling consumer buying decision for recommendation based on multi-task deep learning,” in CIKM, pp. 1703–1706

  64. X. Chen, H. Xu, Y. Zhang, J. Tang, Y. Cao, Z. Qin, H. Zha (2018), “Sequential recommendation with user memory networks,” in WSDM, pp. 108–116

  65. R. He, W.-C. Kang, J. McAuley (2017), “Translation-based recommendation,” in RecSys, pp. 161–169.

  66. R. He, C. Fang, Z.Wang, J. McAuley (2018), “Vista: A visually, socially, and temporally-aware model for artistic recommendation,” in RecSys, pp. 309–316.arXiv:1812.08434,

  67. Zhang S, Yao L, Sun A, et al. (2018) “Neurec: on nonlinear transformation for personalized ranking”. arXiv preprint arXiv:1805.03002

  68. X. Ning, G. Karypis 2011. Slim: Sparse linear methods for top-n recommender systems. In ICDM, pp 497–506

  69. S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme 2009. Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pages 452–461, Arlington, Virginia, United States

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhang, L., Wang, Y. et al. Attribute-aware deep attentive recommendation. J Supercomput 77, 5510–5527 (2021). https://doi.org/10.1007/s11227-020-03459-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03459-9

Keywords

Navigation