Skip to main content
Log in

Design of all-optical parallel multipliers using semiconductor optical amplifier-based Mach–Zehnder interferometers

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Due to the benefits of low power, high bandwidth and complementary metal-oxide-semiconductor (CMOS) compatibility, the design of optical circuits has spurred great attention among researchers in the domain of electronic design automation. With this motivation, all-optical combinational and sequential circuits such as adders, multiplexers, multipliers and flip-flops have been explored in recent times. In this paper, we have explored the designs of all-optical array multiplier and four types of parallel multipliers (carry save adder multiplier, Wallace tree multiplier, Dadda multiplier and reduced area multiplier) using two different design approaches named as Design1 and Design2. In order to design these multipliers, semiconductor optical amplifier (SOA)-based Mach–Zehnder interferometers (MZIs) have been used as the basic optical component. The basic MZI switch, full adder and 2-bit multiplier have been simulated using OptiSystem software to analyze the power loss. Furthermore, an all-optical merged multiplier has been designed, which is often used in digital signal processors. In comparison with other designed multipliers, it is evident from the simulation results that the MZI-based reduced area multiplier of Design1 approach has the highest performance in terms of speed, while the MZI-based carry save adder (CSA) multiplier with Design1 approach has the least optical cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Rupp K, Selberherr S (2011) The economic limit to Moore’s Law. IEEE Trans Semicond Manuf 24(1):1–4

    Article  Google Scholar 

  2. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Develop 5(3):183–191

    Article  MathSciNet  Google Scholar 

  3. Wille R et al (2018) Advanced logic synthesis. Springer, Berlin

    Google Scholar 

  4. Smit M et al (2012) Moore’s Law in Photonics. Wiley J Laser Phot Rev 6(1):1–13

    Article  Google Scholar 

  5. Beausoleil RG et al (2013) Photonic Architectures for High-Performance Data Centers. IEEE J Select Topics Quantum Electr 19(2):3700109–3700109

    Article  Google Scholar 

  6. Fan X et al (2008) Sensitive optical biosensors for unlabeled targets: a review. Elsevier Analytica Chimica Acta 620(12):8–26

    Article  Google Scholar 

  7. WIPE: (Online). http://wipe.jeppix.eu/

  8. Bandyopadhyay C et al (2018) Synthesis of Circuits Based on All-Optical Mach-Zehnder Interferometers using Binary Decision Diagrams. Elsevier Microelectronics Journal 71:19–29

    Article  Google Scholar 

  9. Ying Z et al. (2019) Automated Logic Synthesis for Electro-Optic Computing in Integrated Photonics. In: Proceedings of the SPIE 10924, Optical Interconnects XIX, pp 1–8

  10. Ishihara T et al (2018) An integrated nanophotonic parallel adder. ACM J Emerg Technol Comput Syst (JETC) 26(21):28002–28012

    Google Scholar 

  11. Tian Y et al (2013) Directed XOR/XNOR logic gates using U-to-U waveguides and two microring resonators. IEEE Photon Technol Lett 25(1):18–21

    Article  Google Scholar 

  12. Kumar S et al (2015) Implementation of 2-bit multiplier based on Electro–Optic effect in Mach–Zehnder interferometers. Springer Opt Quantum Electr 47(12):3667–3688

    Article  Google Scholar 

  13. Taraphdar C et al (2010) Mach–Zehnder interferometer-based all-optical reversible logic gate. Elsevier Opt Laser Technol 42(2):249–259

    Article  Google Scholar 

  14. Gayen DK et al (2008) All-optical arithmetic unit with the Help of Terahertz-Optical-Asymmetric-Demultiplexer-Based tree architecture. OSA Appl. Opt. 47(7):933–943

    Article  Google Scholar 

  15. Younis RM et al (2014) Fully integrated AND and OR optical logic gates. IEEE Phot Technol Lett 26(19):1900–1903

    Article  Google Scholar 

  16. Wang Q et al (2004) Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE J Quantum Electr 40(6):703–710

    Article  Google Scholar 

  17. Dutta P et al. (2014) Mach-Zehnder Interferometer Based All Optical Reversible Carry-Lookahead Adder. In: Proceedings of the IEEE ISVLSI, pp 412–417

  18. Das R et al. (2016) All optical reversible design of Mach–Zehnder interferometer based carry-skip adder. In: Proceedings of the IEEE DISCOVER, pp 73–78

  19. Kumar A et al (2014) Implementation of full-adder and full-subtractor based on electro-optic effect in Mach–Zehnder interferometers. Elsevier Opt Commun 324(21):97–107

    Google Scholar 

  20. Roy J et al (2010) All-optical Multiplication Using SOA-MZI based Programmable Logic Device (PLD). In: Proceedings of the International Conference on Communication, Computers and Devices

  21. Law FK, Uddin M, Chen AC et al (2020) Positive Edge-Triggered JK Flip-Flop using Silicon-based Micro-Ring resonator. Springer Opt Quantum Electr 52:314:1–314:12

    Google Scholar 

  22. Patali P, Kassim ST (2020) An Efficient architecture for signed carry save multiplication. IEEE Lett Comput Soc 3(1):9–12

    Article  Google Scholar 

  23. Bickerstaff KC et al (1995) Parallel reduced area multipliers. Springer J VLSI Signal Process Syst 9(3):181–191

    Article  Google Scholar 

  24. Sharma S et al. (2018) On designing all-optical multipliers using Mach–Zender interferometers. In: Proceedings of the Euromicro Conference on Digital System Design (DSD), pp 672–679

  25. Warta MS (2013) Computational photonics: an introduction with MATLAB. Cambridge University Press, Cambridge

    Google Scholar 

  26. Dong H et al (2006) 80Gb/s all-optical logic AND operation using Mach–Zehnder interferometer with differential scheme. Elsevier Opt Commun 265(1):79–83

    Article  Google Scholar 

  27. El-Saeed EM et al (2016) Optical logic gates based on semiconductor optical amplifier Mach–Zehnder interferometer: design and simulation. SPIE Opt Eng 55(2):1–12

    Google Scholar 

  28. Singh S (2012) Lovkesh: ultrahigh speed optical signal processing logic based on an SOA-MZI. IEEE J Select Topics Quantum Electr 18(2):970–977

    Article  Google Scholar 

  29. Kotb A (2017) Computational analysis of solitons all-optical logic NAND and XNOR gates using semiconductor optical amplifiers. Springer Opt Quantum Electr 49(8):281

    Article  Google Scholar 

  30. Singh P et al (2014) All-optical logic gates: designs, classification, and comparison. Adv Opt Technol 2014:13

    Google Scholar 

  31. Kotb A et al (2018) All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach–Zehnder interferometer modules. Elsevier Opt Laser Technol 108:426–433

    Article  Google Scholar 

  32. Singh S et al (2014) Photonic processing for all-optical logic gates based on semiconductor optical amplifier. SPIE Opt Eng 53:1–8

    Google Scholar 

  33. Datta K et al (2015) All optical design of binary adders using semiconductor optical amplifier assisted Mach–Zehnder interferometer. Elsevier Microelectr J 46(9):839–847

    Article  Google Scholar 

  34. Gayen DK et al (2010) All-optical multiplication with the help of semiconductor optical amplifier-assisted Sagnac Switch. Springer J Comput Electr 9(2):57–67

    Article  Google Scholar 

  35. Kumar A (2016) Implementation of all-optical NAND logic gate and half-adder using the micro-ring resonator structures. Springer Opt Quantum Electr 48(10):477

    Article  Google Scholar 

  36. Ying Z et al (2018) Microdisk-Based Full Adders for Optical Computing in Silicon Photonics. In: Proceedings of the Conference on Lasers and Electro-Optics (CLEO), p. SF1A.3

  37. Sharma S, Roy S (2020) A Survey on Design and Synthesis Techniques for Photonic Integrated Circuits. Springer J Supercomput. https://doi.org/10.1007/s11227-020-03430-8

    Article  Google Scholar 

  38. Manna A et al (2017) All Optical Design of Cost Efficient Multiplier Circuit using Terahertz Optical Asymmetric Demultiplexer. In: Proceedings of the International Symposium on Embedded Computing and System Design (ISED), pp 1–5

  39. OptiSystem. Optiwave Photonic Software. https://optiwave.com/optisystem-overview/, Accessed 1 Oct 2020

  40. Fitsios D et al (2014) Dual SOA-MZI wavelength converters based on III-V Hybrid integration on a \(\mu {\rm m}\)-scale Si platform. IEEE Phot Technol Lett 26(6):560–563

    Article  Google Scholar 

  41. Islam FF, Tamaru K (1993) High Speed Merged Multiplication. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 377–380

  42. Abdelgawad A, Bayoumi M (2007) High Speed and Area-Efficient Multiply Accumulate (MAC) Unit for Digital Signal Prossing Applications. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp 3199–3202

Download references

Acknowledgements

This work by S. Sharma was supported by the Ministry of Electronics and Information Technology (MeitY), Govt. of India (Grant \(\#\): MEITY-1100-CSE). This work by S. Roy was supported by the FIG research grant of Indian Institute of Technology (IIT) Roorkee sponsored by the MHRD, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Roy, S. Design of all-optical parallel multipliers using semiconductor optical amplifier-based Mach–Zehnder interferometers. J Supercomput 77, 7315–7350 (2021). https://doi.org/10.1007/s11227-020-03543-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03543-0

Keywords

Navigation