Skip to main content

Advertisement

Log in

Optimized area efficient quantum dot cellular automata based reversible code converter circuits: design and energy performance estimation

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) based circuit designs are creating a surge in transistorless computational technologies. Due to its quasi-adiabatic switching resulting in extremely low leakage power dissipation as there is no continuous path. These circuits also enjoy extremely high packaging density of the order of 10\(^{12}\) devices/\(\hbox {cm}^2\) because of its extremely scaled area of 18 nm x 18 nm along with very high 100 GHz frequency of operation. Further the loss of bit information could be abolished by reversible logic computing. This thereby realizes an energy efficient logic operations owing to bijective relation between inputs and outputs in reversible logic. This work investigates the code converter circuits which converts 4-bit binary code to excess-3 code and vice versa based on reversible QCA logic gates for the first time. Moreover an area efficient design for 4-bit binary to gray and vice-versa code converters also designed here. All these four code converter circuits are designed using reversible logic gate Feynman and Peres gates by deploying the QCA Designer and Designer-E tool v2.0.3. Finally the in depth performance estimation of the proposed circuits in terms of circuit complexity, quantum cost and energy dissipation are also presented here. Moreover, these QCA based circuits provide a strong evidence that reversible logic based QCA circuits can be efficiently deployed for these code converter circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Shalf J (2020) The future of computing beyond Moore’s law. Philos Trans R Soc A 378(2166):20190061

    Article  MathSciNet  Google Scholar 

  2. Yang JH, Li GF, Liu HL (2008) Edge direct tunneling current in nano- scale MOSFET with high- K dielectrics. Microelectron Int 25:30–33

    Article  Google Scholar 

  3. Kaity A, Singh S, Kondekar PN (2020) Silicon-on-nothing electrostatically doped junctionless tunnel field effect transistor (SON-ED-JLTFET): a short channel effect resilient design. Silicon 6:1–15

    Google Scholar 

  4. Kastner MA (1992) The single-electron transistor. Rev Mod Phys 64(3):849

    Article  Google Scholar 

  5. Ohshima T (1996) Stability of binary logic tunneling phase states in dc- biased and ac- pumped single-electron tunnel junctions. Appl Phys Lett 69(26):4059–4061

    Article  Google Scholar 

  6. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657

    Article  Google Scholar 

  7. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4:49–57

    Article  Google Scholar 

  8. Orlov AO, Amlani I, Bernstein GH, Lent CS, Sinder GL (1997) Realization of a functional cell for quantum dot cellular automata. Science 277:928–930

    Article  Google Scholar 

  9. Porod W (1997) Quantum-dot devices and quantum-dot cellular automata. J Frankl Inst 334(5–6):1147–1175

    Article  Google Scholar 

  10. Lent CS, Tougaw P (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557

    Article  Google Scholar 

  11. Porod W, Lent CS, Bernstein GH, Orlov AO, Hamlani I, Snider GL, Merz JL (1999) Quantum-dot cellular automata: computing with coupled quantum dots. Int J Electron 86(5):549–590

    Article  Google Scholar 

  12. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825

    Article  Google Scholar 

  13. Wang W, Walus K, Jullien GA (2003) August. Quantum-dot cellular automata adders. Third IEEE Conf Nanotechnol 1:461–464

    Article  Google Scholar 

  14. Lakshmi SK, Athisha G, Karthikeyan M, Ganesh C (2010) October. Design of subtractor using nanotechnology based QCA. International conference on communication control and computing technologies, pp. 384-388

  15. Hashemi S, Azghadi MR, Zakerolhosseini A (2008) A novel QCA multiplexer design. International symposium on telecommunications, pp. 692-696

  16. Kianpour M, Sabbaghi-Nadooshan R (2011) December. A novel modular decoder implementation in quantum-dot cellular automata (QCA). International conference on nanoscience, technology and societal implications, pp. 1-5

  17. Ghosh B, Gupta S, Kumari S, Salimath A (2013) Novel design of combinational and sequential logical structures in quantum dot cellular automata. J Nanostruct Chem 3(1):15

    Article  Google Scholar 

  18. Ahmad F, Bhat G (2014) Novel code converters based on quantum-dot cellular automata (QCA). Int J Sci Res 3(5):364–371

    Google Scholar 

  19. Huang J, Momenzadeh M, Lombardi F (2007) Design of sequential circuits by quantum-dot cellular automata. Microelectron J 38(4–5):525–537

    Article  Google Scholar 

  20. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183–191

    Article  MathSciNet  Google Scholar 

  21. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532

    Article  MathSciNet  Google Scholar 

  22. Feynman RP (1985) Quantum mechanical computers. Opt News 11(2):11–20

    Article  Google Scholar 

  23. Biswas PK, Bahar AN, Habib MdA, Shafi Md A-A, (2017) Efficient design of Feynman and Toffoli gate in quantum dot cellular automata (QCA) with energy dissipation analysis. Nanosci Nanotechnol 7(2):27–33

    Google Scholar 

  24. Toffoli T (1980) Reversible computing. International colloquium on automata, languages, and programming. Springer, Berlin, pp 632–644

    Chapter  Google Scholar 

  25. Peres A (1985) Reversible logic and quantum computers. Phys Rev A 32(6):3266

    Article  MathSciNet  Google Scholar 

  26. Fredkin E, Toffoli T (1982) Conservative logic. Int J theor Phys 21(3–4):219–253

    Article  MathSciNet  Google Scholar 

  27. Das K, De D (2010) Characterization, test and logic synthesis of novel conservative and reversible logic gates for QCA. Int J Nanosci 9(3):201–214

    Article  Google Scholar 

  28. Kumar P, Singh S (2019) Optimization of the area efficiency and robustness of a QCA-based reversible full adder. J Comput Electron 18(4):1478–1489

    Article  Google Scholar 

  29. Thapliyal H, Ranganathan N (2009) Design of efficient reversible binary subtractors based on a new reversible gate. IEEE computer society annual symposium on VLSI, pp. 229-234

  30. Sen B, Dutta M, Goswami M, Sikdar BK (2014) Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron J 45(11):1522–1532

    Article  Google Scholar 

  31. Das JC, De D, Sadhu T (2016) A novel low power nanoscale reversible decoder using quantum-dot cellular automata for nanocommunication. 3rd international conference on devices, circuits and systems (ICDCS), pp. 220-224

  32. Das JC, De D (2019) Novel design of reversible priority encoder in quantum dot cellular automata based on Toffoli gate and Feynman gate. J Supercomput 75:6882–6903

    Article  Google Scholar 

  33. Thapliyal H, Ranganathan N (2010) Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans Nanotechnol 9(1):62–69

    Article  Google Scholar 

  34. Thapliyal H, Ranganathan N, Kotiyal S (2013) Design of testable reversible sequential circuits. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(7):1201–1209

    Article  Google Scholar 

  35. Lu L, Liu W, O’Neill M, Swartzlander EE (2011) QCA systolic array design. IEEE Trans Comput 62(3):548–560

    Article  MathSciNet  Google Scholar 

  36. Hashemi S, Navi K (2014) Designing quantum-dot cellular automata circuits using a robust one layer crossover scheme. J Eng 3:93–97

    Article  Google Scholar 

  37. Abdullah-Al-Shafi M, Bahar AN (2016) Novel binary to gray code converters in QCA with power dissipation analysis. Int J Multimed Ubiquitous Eng 11(8):379–396

    Article  Google Scholar 

  38. Das JC, De D (2015) Reversible binary to grey and grey to binary code converter using QCA. IETE J Res 61(3):223–229

    Article  Google Scholar 

  39. Karkaj ET, Heikalabad SR (2017) Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik 130:981–989

    Article  Google Scholar 

  40. Iqbal J, Khanday FA, Shah NA (2013) Efficient quantum dot cellular automata (QCA) implementation of code converters. Commun Inf Sci Manag Eng 3(10):504–515

    Google Scholar 

  41. Sasamal TN, Singh AK, Mohan A (2020) Quantum-dot cellular automata based digital logic circuits: a design perspective, studies in computational intelligence, vol 879. Springer, Singapore

    Book  Google Scholar 

  42. Sasamal TN, Singh AK, Mohan A (2016) An optimal design of full adder based on 5-input majority gate in co-planar quantum-dot cellular automata. Optik 127(20):8576–8591

    Article  Google Scholar 

  43. Bahar AN, Wahid KA (2019) Design of QCA-serial parallel multiplier (QSPM) with energy dissipation analysis. IEEE Trans Circ Syst II Exp Briefs 67(10):1939–1943

    Google Scholar 

  44. Chaves JF, Ribeiro MA, Silva LM, de Assis LM, Torres MS, Neto OPV (2018) Energy efficient QCA circuits design: simulating and analyzing partially reversible pipelines. J Comput Electron 17(1):479–489

    Article  Google Scholar 

  45. Kaity A, Singh S, Hossain K (2020) Quantum dot celluar automata–based encoder and priority encoder circuits: low latency and area efficient design. Int J Numer Model Electron Netw Devices Fields 1:e2850

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishwarya Kaity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaity, A., Singh, S. Optimized area efficient quantum dot cellular automata based reversible code converter circuits: design and energy performance estimation. J Supercomput 77, 11160–11186 (2021). https://doi.org/10.1007/s11227-021-03693-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03693-9

Keywords

Navigation