Skip to main content
Log in

Dynamic programming-based computation of an optimal tap working pattern in nonferrous arc furnace

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Power is essential in nonferrous arc furnace plants for burning and melting scraps, as well as for the composition of raw materials to produce the furnace product. To ensure high-quality operation, the electric energy is controlled by changing the tap positions. However, there is no standard working pattern to determine the most effective option for changing the tap positions to obtain optimal power and product quantity. This study proposes a method to analyze and determine the working patterns in nonferrous arc furnace plants by adopting dynamic programming. To find the best objective value candidates, statistical methods were utilized to obtain the optimal values of the total elemental power and total product quantity. Moreover, if the maximum product quantity minimum electric consumption are known, the least power per product quantity (PPQ) can be easily obtained. Thus, it is reasonable to analyze the sequences of tap positions and then obtain the best PPQ using an approach of solving a recurrence problem with the widely used dynamic programming approach. We demonstrated that the proposed method suggested the working pattern of tap positions, thereby providing relatively good PPQs in comparison with the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hudson R, Sadler D (2017) The international steel industry: restructuring, state policies and localities. Routledge, London

    Book  Google Scholar 

  2. Bradly F, and Nicholas W (2019) Worldsteel Short Range Outlook 2019, [Online]. Available: http://www.worldsteel.org/media-centre/press-releases/2019/worldsteel-short-range-outlook-2019.html. [Accessed: 12-Dec-2019].

  3. Bradly F, and Nicholas W (2019) World Steel in Figures 2019 now available, [Online]. Available: http://www.worldsteel.org/media-centre/press-releases/2019/world-steel-in-figures-2019.html. [Accessed: 12-Dec-2019].

  4. Madias J (2013) Electric arc furnace, Ironmaking and Steelmaking Processes: Greenhouse Emissions, Control, and Reduction

  5. Kovačič M, Stopar K, Vertnik R, Šarler B (2019) Comprehensive electric arc furnace electric energy consumption modeling: a pilot study. Energies 12(11):2142. https://doi.org/10.3390/en12112142

    Article  Google Scholar 

  6. Darmana D, Olsen JE, Tang K and Ringldalen E (2012) Modelling concept for submerged arc furnaces. In: The 9th International Conference on CFD in the Minerals and Process Industries CSIRO. Melbourne, Australia

  7. Friedrich B, Kalisch M, Friedmann D, Degel R, Kaußen F, Bohlke J (2018) The submerged arc furnace (SAF): state-of-the-art metal recovery from nonferrous slags. J Sustaine Metal. https://doi.org/10.1007/s40831-017-0153-1

    Article  Google Scholar 

  8. Saevarsdottir GA and Bakken JA (2010) Current distribution in submerged arc furnacesfor silicon metal /ferrosilicon production. The 12th International Ferroalloys Congress, pp.717–728

  9. Tesfahunegn YA, Magnusson T, Tangstad M and Saevarsdottir G (2018) Dynamic current distribution in the electrodes of submerged arc furnace using scalar and vector potentials, Computational Science – ICCS 2018 pp 518–527

  10. Minoru K, Masao M and Yoshiyuki K (1983) Improvement of the electric power consumption in silicomanganese smelting, Proceedings of INFACON III, Tokyo, Japan, 8–11

  11. Kovacic M, Stopar K, Vertnik R, Šarler B (2019) Comprehensive electric arc furnace electric energy consumption modeling: a pilot study. Energies 12:2142. https://doi.org/10.3390/en12112142

    Article  Google Scholar 

  12. Klemen S, Kovacic M, Peter K, Jože P (2014) Electric-arc-furnace productivity optimization. Mater Tehnol 48:3–7

    Google Scholar 

  13. Cano-Plata EA, Ustariz-Farfán AJ, Estrada JH (2018) Programming of operation in electric arc furnaces. IEEE Trans Ind Appl 54(4):3902–3908. https://doi.org/10.1109/TIA.2018.2814978

    Article  Google Scholar 

  14. Mesa Fernández JM, Cabal VA, Montequin VR, Balsera JV (2018) Online estimation of electric arc furnace tap temperature by using fuzzy neural networks. Eng Appl Artif Intell 21:1001–1012

    Article  Google Scholar 

  15. Gajic D, Savic-Gajic I, Savic I, Georgieva O, Di Gennaro S (2016) Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks. Energy 108:132–139. https://doi.org/10.1016/j.energy.2015.07.068

    Article  Google Scholar 

  16. Shyamal S, Swartz CLE (2019) Real-time energy management for electric arc furnace operation. J Process Control 74:50–62. https://doi.org/10.1016/j.jprocont.2018.03.002

    Article  Google Scholar 

  17. Olczykowski Z (2003) Methods of determination of the voltage fluctuations and light flicker at simultaneous operation of three-phase arc furnaces. Electr Power Qual Util 9(1):47–58

    Google Scholar 

  18. Al-Zaid RZ, Al-Sugair FH, Al-Negheimish AI (1997) Investigation of potential uses of electric-arc furnace dust (EAFD) in concrete. Cem Concr Res 27(2):267–278

    Article  Google Scholar 

  19. Rojas MF, De Rojas MS (2004) Chemical assessment of the electric arc furnace slag as construction material: expansive compounds. Cem Concr Res 34(10):1881–1888

    Article  Google Scholar 

  20. King PE, Nyman MD (1996) Modeling and control of an electric arc furnace using a feedforward artificial neural network. J Appl Phys 80(3):1872–1877

    Article  Google Scholar 

  21. Ma TLW, Sedighy M, Perkins BK, Gerritsen TA, and Rajda J (2003) Power control system for AC electric arc furnace

  22. Trageser JJ (1980) Power usage and electrical circuit analysis for electric arc furnaces. IEEE Trans Ind Appl 2:277–284

    Article  Google Scholar 

  23. Borovskỳ T, Kijac J, Domovec M (2010) The slag composition influence on the dephosphorization and on the lifetime of electric arc furnace hearth refractory lining. Acta Metall Slovaca 16(3):165–171

    Google Scholar 

  24. Fisher D, DeLine R, Czerwinski M, Drucker S (2012) Interactions with big data analytics. Interactions 19(3):50–59

    Article  Google Scholar 

  25. Denardo EV (2012) Dynamic programming: models and applications. Courier Corporation, USA

    MATH  Google Scholar 

  26. Bertsekas DP, Bertsekas DP, Bertsekas DP, Bertsekas DP (1995) Dynamic programming and optimal control, vol 1. Athena scientific Belmont, MA

    MATH  Google Scholar 

  27. Sprinthall RC, Fisk ST (1990) Basic statistical analysis. Prentice Hall Englewood Cliffs, NJ

    Google Scholar 

  28. Perkel JM (2018) Why Jupyter is data scientists’ computational notebook of choice. Nature 563(7732):145–147

    Article  Google Scholar 

  29. T. E. Oliphant, A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

  30. Pedregosa F et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  31. G. Fox et al. (2019) “Learning Everywhere: Pervasive machine learning for effective High-Performance computation,” ArXiv Prepr. ArXiv190210810

  32. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, Cambridge

    MATH  Google Scholar 

  33. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan-Hee Yoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ean, S., Bazarbaev, M., Lee, K.M. et al. Dynamic programming-based computation of an optimal tap working pattern in nonferrous arc furnace. J Supercomput 78, 640–666 (2022). https://doi.org/10.1007/s11227-021-03880-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03880-8

Keywords

Navigation