Skip to main content

Advertisement

Log in

Automated building and road classifications from hyperspectral imagery through a fully convolutional network and support vector machine

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Hyperspectral imagery facilitates the determination of various urban-correlated characteristics, such as features on the Earth's surface, including roads, trees, buildings, and natural and anthropogenic structures. Road network and building extractions are some of the main tasks necessary for emergency management, smart transport, and smart city systems. Currently, most researchers are focusing on deep learning and machine learning methods to classify high-resolution images. Machine learning algorithms have become important tools in modern hyperspectral image analyses. Hyperspectral images cover a variety of spectral bands with rather finite intervals in the electromagnetic spectrum and high spectral data resolutions. It is important to use high-resolution imagery to extract these features. The main objective of this research is to create a current technique for dimensionality reductions, automated building extractions, and road detections obtained from hyperspectral images. Given the above issues, this paper proposes a new dimensionality reduction and classification technique by combining the ICA, PCA, FCN, and SVM classification models. This new model extracts and classifies road and building features from hyperspectral imagery with the highest accuracy. The experimental findings obtained based on the ground truth of a Pavia University dataset and DC Mall dataset show significantly better accuracy compared to the results of existing machine learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wan S, Gong C, Zhong P, Du B, Zhang L, Yang J (2019) Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 58(5):3162–3177

    Article  Google Scholar 

  2. Rasti B, Hong D, Hang R, Ghamisi P, Kang X, Chanussot J, Benediktsson JA (2020) Feature extraction for hyperspectral imagery: The evolution from shallow to deep. arXiv preprint https://arxiv.org/abs/2003.02822v4

  3. Mayer H (1999) Automatic object extraction from aerial imagery—a survey focusing on buildings. Comput Vision Image Underst 74(2):138–149

    Article  Google Scholar 

  4. Krizhevsky A, Hinton GE (2012) ImageNet classification with a deep convolutional neural network. Adv Neural Inf Process Syst 1:1097–1105

    Google Scholar 

  5. Ma L, Crawford MM, Tian J (2010) Local manifold learning-based $ k $-nearest-neighbor for hyperspectral image classification. IEEE Trans Geosci Remote Sens 48(11):4099–4109

    Google Scholar 

  6. Kuo BC, Huang CS, Hung CC, Liu YL, Chen IL (2010) Spatial information-based support vector machine for hyperspectral image classification. In 2010 IEEE International geoscience and remote sensing symposium, pp. 832–835. IEEE.

  7. Shi L, Zhang L, Yang J, Zhang L, Li P (2012) Supervised graph embedding for polarimetry SAR image classification. IEEE Geosci Remote Sens Lett 10(2):216–220

    Article  Google Scholar 

  8. Li W, Chen C, Su H, Du Q (2015) Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 53(7):3681–3693

    Article  Google Scholar 

  9. Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985

    Article  Google Scholar 

  10. Hang R, Liu Q, Song H, Sun Y (2015) Matrix-based discriminant subspace ensemble for hyperspectral image spatial-spectral feature fusion. IEEE Trans Geosci Remote Sens 54(2):783–794

    Article  Google Scholar 

  11. Zhang L, Zhang Q, Du B, Huang X, Tang YY, Tao D (2016) Simultaneous spectral-spatial feature selection and extraction for hyperspectral images. IEEE Trans Cybern 48(1):16–28

    Article  Google Scholar 

  12. Zhong Z, Fan B, Duan J, Wang L, Ding K, Xiang S, Pan C (2014) Discriminant tensor spectral-spatial feature extraction for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(5):1028–1032

    Article  Google Scholar 

  13. Wang Y, Loe KF, Tan T, Wu JK (2005) A dynamic Hidden Markov Random Field Model for foreground and shadow segmentation. In: 2005 Seventh IEEE Workshops on applications of computer vision (WACV/MOTION'05)-Volume 1 , Vol. 1, pp. 474-480. IEEE.

  14. Scheffler D, Karrasch P (2013) Preprocessing of hyperspectral images: a comparative study of de-striping algorithms for EO1-Hyperion. Image Signal Process Remote Sens XIX 8892:88920H

    Article  Google Scholar 

  15. Chen C, Li W, Tramel EW, Cui M, Prasad S, Fowler JE (2014) Spectral–spatial preprocessing using multi-hypothesis prediction for noise-robust hyperspectral image classification. IEEE J Select Topics Appl Earth Observ Remote Sens 7(4):1047–1059

    Article  Google Scholar 

  16. Wang J, Chang CI (2006) Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans Geosci Remote Sens 44(6):1586–1600

    Article  Google Scholar 

  17. Xin Q, Nian Y, Li X, Wan J, Su L (2009) Dimensionality reduction for hyperspectral imagery based on fastica. J Electron 26(6):831–835

    Google Scholar 

  18. Maggiori E, Tarabalka Y, Charpiat G, Alliez, P (2016) Fully convolutional neural networks for remote sensing image classification. In: 2016 IEEE international geoscience and remote sensing symposium (IGARSS), pp. 5071-5074. IEEE

  19. Fu G, Liu C, Zhou R, Sun T, Zhang Q (2017) Classification for high-resolution remote sensing imagery using a fully convolutional network. Remote Sens 9(5):498

    Article  Google Scholar 

  20. Luo H (2018) Shorten spatial-spectral RNN with parallel-GRU for hyperspectral image classification. arXiv preprint https://arxiv.org/abs/1810.12563v1.

  21. Guo Y, Cao H, Han S, Sun Y, Bai Y (2018) Spectral–spatial hyperspectral image classification with a k-nearest neighbor and guided filter. IEEE Access 6:18582–18591

    Article  Google Scholar 

  22. Li J, Zhao X, Li Y, Du Q, Xi B, Hu J (2018) Classification of hyperspectral imagery using a new fully convolutional neural network. IEEE Geosci Remote Sens Lett 15(2):292–296

    Article  Google Scholar 

  23. Chandra MA, Bedi SS (2018) Survey on SVM and their application in image classification. Int J Inf Technol. https://doi.org/10.1007/s41870-017-0080-1

    Article  Google Scholar 

  24. Jiang J, Ma J, Wang Z, Chen C, Liu X (2018) Hyperspectral image classification in the presence of noisy labels. IEEE Trans Geosci Remote Sens 57(2):851–865

    Article  Google Scholar 

  25. Hang R, Li Z, Liu Q, Ghamisi P, Bhattacharyya SS (2020) Hyperspectral image classification with attention aided CNNs. arXiv preprint https://arxiv.org/abs/2005.11977v2.

  26. Zou L, Zhu X, Wu C, Liu Y, Qu L (2020) Spectral-spatial exploration for hyperspectral image classification via the fusion of fully convolutional networks. IEEE J Select Topics Appl Earth Observ Remote Sens 13:659–674

    Article  Google Scholar 

  27. He W, Zhang H, Zhang L, Shen H (2015) Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation. IEEE J Select Topics Appl Earth Observ Remote Sens 8(6):3050–3061

    Article  Google Scholar 

  28. Hasanlou M, Samadzadegan F (2012) Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using K-NN classifier. IEEE Geosci Remote Sens Lett 9(6):1046–1050

    Article  Google Scholar 

  29. Hsu PH, Tseng YH, Gong P (2002) Dimension reduction of hyperspectral images for classification applications. Geogr Inf Sci 8(1):1–8

    Google Scholar 

  30. Van der Maaten LJP, Postma E, and van den Herik J (2009) Dimensionality reduction: a comparative review. Tilburg University, TiCC TR 2009–005.

  31. Vapnik VN, Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  32. Du Q, Kopriva I, Szu HH (2006) Independent-component analysis for hyperspectral remote sensing imagery classification. Opt Eng 45(1):017008

    Article  Google Scholar 

  33. Mou L, Lu X, Li X, Zhu XX (2020) nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 58:8246–8257

    Article  Google Scholar 

  34. Zhou F, Hang R, Liu Q, Yuan X (2019) Pyramid fully convolutional network for hyperspectral and multispectral image fusion. IEEE J Select Topics Appl Earth Observ Remote Sens 12(5):1549–1558

    Article  Google Scholar 

  35. Palsson F, Sveinsson JR, Ulfarsson MO (2017) Multispectral and hyperspectral image fusion using a 3-D-convolutional neural network. IEEE Geosci Remote Sens Lett 14(5):639–643

    Article  Google Scholar 

  36. Masi G, Cozzolino D, Verdoliva L, Scarpa G (2016) Pansharpening by convolutional neural networks. Remote Sens 8(7):594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prabu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamilarasi, R., Prabu, S. Automated building and road classifications from hyperspectral imagery through a fully convolutional network and support vector machine. J Supercomput 77, 13243–13261 (2021). https://doi.org/10.1007/s11227-021-03954-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03954-7

Keywords

Navigation