Skip to main content
Log in

Improving the performance of uplink visible light communication in urban streets

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper studies the performance of the reverse link adopting visible light communication at urban street environments. Firstly, the signal transmitting schemes are classified into two cases: only the head lamps are used or both the head lamps and the tail lamps are used; secondly, mathematical models corresponding the two different signal transmitting schemes for analyzing the performance of the reverse visible light communication link between a vehicle and the road side equipment are set up; thirdly, a method to improve the quality of the reverse visible light communication link is proposed; finally, three types of simulations are conducted to check the influence of receiver height and vehicle position on the link quality, respectively, and to check the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Komine T, Nakagawa M (2004) Fundamental analysis for visible-light communication system using LED lights. IEEE Trans Consum Electron 50(1):100–107

    Article  Google Scholar 

  2. Demir MS, Uysal M (2021) A cross-layer design for dynamic resource management of VLC Networks. IEEE Trans Commun 99:1858–1867

    Article  Google Scholar 

  3. Guo JN, Zhang J, Zhang YY, Li L, Chen RH (2020) Multilevel transmission scheme based on parity check codes for VLC with dimming control. Opt Commun 467:125733

    Article  Google Scholar 

  4. Wu S, Wang H, Youn CH (2014) Visible light communications for 5G wireless networking systems: from fixed to mobile communications. IEEE Network 12:41–45

    Article  Google Scholar 

  5. Kim DH (2014) Energy-efficient brightness control and data transmission for visible light communication. IEEE Photon Technol Lett 26(8):781–784

    Article  Google Scholar 

  6. Lee K, Park H (2011) Modulations for visible light communications with dimming control. IEEE Photon Technol Lett 23(16):1136–1138

    Article  Google Scholar 

  7. Cailean AM, Dimian M (2016) Toward environmental-adaptive visible light communications receivers for automotive applications: a review. IEEE Sensor J 16(9):2803–2811

    Article  Google Scholar 

  8. J.H. Lee, S.Y. Jung. SNR analyses of the multi-spectral light channels for optical wireless LED communications in intelligent transportation system, Proc. of VTC 2014, 2014, Seoul: 1–5

  9. Nawaz T, Seminara M, Caputo S, Mucchi L, Cataliotti F, Catani J (2019) Ieee 802.15.7-compliant ultra-low latency relaying VLC system for safety-critical its. IEEE Trans Vehicular Technol 68(12):12040–12051

    Article  Google Scholar 

  10. Boubakri W, Abdallah W, Boudriga N (2015) A light-based communication architecture for smart city applications. International Conference on Transparent Optical Networks. IEEE

  11. Akanegawa M, Tanaka Y, Nakagawa M (2001) Basic study on traffic information system using LED traffic lights. IEEE Trans Intell Transp Syst 2(4):197–203

    Article  Google Scholar 

  12. Kitano S, Haruyama S, Nakagawa M. LED road illumination communications system[C]//2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484). IEEE, 2003, 5: 3346–3350.

  13. F. Knobloch, Channel gain and frame error rate for optical street lighting communication, Proc. of 13th International Conference on Telecommunications (ConTEL), 2015 , IEEE Press:1–5

  14. R.P. Jimenez, J. Rabadan, J. Rufo and E. Solana, et al. Visible light communications technologies for smart tourism destinations, Proc. of IEEE First International Smart Cities Conference, 2015:1–5

  15. S. J. Lee, J. K. Kwon, S. Y. Jung, and Y. H. Kwon. Simulation modeling of visible light communication channel for automotive applications, Proc. of the 15th International IEEE Conference on Intelligent Transportation Systems, Alaska, USA, 2012:463–468

  16. Kumar N, Lourenco NF (2012) Led-based visible light communication: a brief survey and investigation. J Eng Appl Sci 5(4):296–307

    Google Scholar 

  17. Cem BF et al (2017) Vehicles of the future: a survey of research on safety issues. IEEE Trans Intell Trans Syst 18:1046–1065

    Article  Google Scholar 

  18. Uysal M, Ghassemlooy Z, Bekkali A et al (2015) Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model. IEEE Veh Technol Mag 10(4):45–53

    Article  Google Scholar 

  19. Chen S. Dynamic spectrum access and cognitive radio for vehicular communication networks. Vehicular Commun Netw, 2015: 127–150.

  20. Shen W H, Tsai H M.Testing vehicle-to-vehicle visible light communications in real-world driving scenarios[C]// 2017 IEEE Vehicular Networking Conference (VNC). IEEE, 2017.

  21. Ghassemlooy Z, Haigh PA, Arca F et al (2013) Visible light communications: 3.75 Mbits/s data rate with a 160 kHz bandwidth organic photodetector and artificial neural network equalization. Photon Res 1(2):65–68

    Article  Google Scholar 

  22. Haigh PA, Ghassemlooy Z, Rajbhandari S et al (2014) Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration. J Lightwave Technol 32(9):1807–1813

    Article  Google Scholar 

  23. Yesilkaya A, Karatalay O, Ogrenci A S, et al. Channel estimation for visible light communications using neural networks. 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016: 320–325.

  24. Lee H, Lee I, Quek TQS et al (2018) Binary signaling design for visible light communication: a deep learning framework. Opt Express 26(14):18131–18142

    Article  Google Scholar 

  25. Lee H, Lee I, Lee SH (2018) Deep learning based transceiver design for multi-colored VLC systems. Opt Express 26(5):6222

    Article  Google Scholar 

  26. Dang QH, Yoo M (2017) Handover procedure and algorithm in vehicle to infrastructure visible light communication. IEEE Access 5:26466–26475

    Article  Google Scholar 

  27. Zhao S, Ma X (2017) A spectral-efficient transmission scheme for dimmable visible light communication systems. J Lightwave Technol 35(17):3801–3809

    Article  Google Scholar 

  28. Li H, Zhang Y, Chen X et al (2015) 682 Mbit/s phosphorescent white LED visible light communications utilizing analog equalized 16QAM-OFDM modulation without blue filter. Optics Commun 354:107–111

    Article  Google Scholar 

  29. Wang Y, Huang X, Tao L et al (2015) 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization. Optics Express 23(10):13626–13633

    Article  Google Scholar 

  30. Fahs B, Chellis J, Senneca MJ et al (2016) A 6-m OOK VLC link using CMOS-compatible pn photodiode and red LED. IEEE Photon Technol Lett 28(24):2846–2849

    Article  Google Scholar 

  31. Zhang H, Yang A, Feng L et al (2018) Gb/s Real-time visible light communication system based on white LEDs using T-bridge cascaded pre-equalization circuit. IEEE Photon J 10(2):1–7

    Google Scholar 

  32. Qian H, Yao SJ, Cai SZ et al (2014) Adaptive postdistortion for nonlinear LEDs in visible light communications. IEEE Photon J 6(4):7901508

    Article  Google Scholar 

  33. Sharma R, Kumari AC (2017) Performance analysis of rectangular and circular shape building deployment for an indoor visible light communication system. Int J Comput Netw Inform Security 9(7):11

    Google Scholar 

  34. Liu H, Wang X, Chen Y et al (2017) Optimization lighting layout based on gene density improved genetic algorithm for indoor visible light communications. Opt Commun 390:76–81

    Article  Google Scholar 

  35. Tan M, Chen J (2019) Dynamical optimized lamps distribution based on genetic algorithm for visible light communications. In: Eleventh International Conference on Information Optics and Photonics (CIOP 2019), 1120948

  36. Wang S, Lu Z, Wei L et al (2016) Fitness-scaling adaptive genetic algorithm with local search for solving the multiple depot vehicle routing problem. SIMULATION 92(7):601–616

    Article  Google Scholar 

  37. Van Gerven M, Bohte S (2017) Artificial neural networks as models of neural information processing. Front Comput Neurosci 11:114

    Article  Google Scholar 

  38. Zhang Y-Y, Hong-Yi Yu, Zhang J-K (2016) On the optimality of spatial repetition coding for MIMO optical wireless communications. IEEE Commun Lett 20(5):846–849

    Article  Google Scholar 

  39. Xinyue G, Shuangshuang LI (2018) MIMO channel correlation study of indoor visible light communication. Semicond Optoelectron 1(39):124–128

    Google Scholar 

  40. Ahmed M, Ahmmed KT, Hossan A et al (2016) Performance of free space optical communication systems over exponentiated Weibull atmospheric turbulence channel for PPM and its derivatives. Optik 127(20):9647–9657

    Article  Google Scholar 

  41. Islam A, Hossan MT, Jang YM (2018) Convolutional neural networkscheme-based optical camera communication system for intelligent Internet of vehicles. Int J Distrib Sensor Netw 14(4):1–10

    Article  Google Scholar 

  42. Kang SY, Kim TH, Chung WZ (2020) Hybrid RSS/AOA localization using approximated weighted least square in wireless sensor networks. Sensor 20(4):21–23

    Article  Google Scholar 

  43. Zhao L, Mao Y, Xu P (2018) Single-station location algorithm based on secondary scatterer model. J Comput Methods Sci Eng 18(3):737–747

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technical Fund of South China Electrical Power Grid Corporation with item number 039920KK52150002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, S. Improving the performance of uplink visible light communication in urban streets. J Supercomput 78, 3775–3790 (2022). https://doi.org/10.1007/s11227-021-04010-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04010-0

Keywords

Navigation