Skip to main content
Log in

An efficient authentication with key agreement procedure using Mittag–Leffler–Chebyshev summation chaotic map under the multi-server architecture

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The recent technological advancement and rapid development of computer networks have increased the popularity of remote password authentication protocols. Toward this end, the emphasis has shifted to protocols that apply to smart cards-empowered multi-server environments. In order to defend against the replay attack, these protocols usually depend on the nonce or timestamp. In this paper, an efficient Mittag–Leffler–Chebyshev Summation Chaotic Map (MLCSCM)-enabled multi-server authentication protocol with the key agreement is proposed and generalized to address this peculiarity in multi-server-oriented applications. The security proof and efficiency analysis of the presented MLCSCM authenticated key agreement protocol is rigorously derived and validated. Compared to the recently published literature, the proposed protocol presents high efficiency with unique features, and it is highly resistant to sophisticated attacks and achieves perfect forward secrecy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Y, Li C, Khan MA, Li N, Yuan R (2021) Firm information disclosure environment and R&D investment: evidence from Internet penetration. PLoS ONE 16(3):1–20. https://doi.org/10.1371/journal.pone.0247549

    Article  Google Scholar 

  2. Gannon DB, Rosendale V (1984) On the impact of communication complexity on the design of parallel numerical algorithms. IEEE Trans Comput 33(12):1180–1194. https://doi.org/10.1109/TC.1984.1676393

    Article  MATH  Google Scholar 

  3. Li CT, Lee CC (2011) A robust remote user authentication scheme using smart card. Inf Technol Control 40(3):236–245. https://doi.org/10.5755/j01.itc.40.3.632

    Article  Google Scholar 

  4. Li CT, Lee CC, Weng CY, Fan CI (2013) An extended multi-server-based user authentication and key agreement scheme with user anonymity. KSII Trans Internet Inf Syst 7(1):119–131. https://doi.org/10.3837/tiis.2013.01.008

    Article  Google Scholar 

  5. Menkus B (1988) Understanding the use of passwords. Comput Secur 7(2):132–136. https://doi.org/10.1016/0167-4048(88)90325-2

    Article  Google Scholar 

  6. Tsaur W-J, Li J-H, Lee W-B (2012) An efficient and secure multi-server authentication scheme with key agreement. J Syst Softw 85(4):876–882. https://doi.org/10.1016/j.jss.2011.10.049

    Article  Google Scholar 

  7. Kohl JT, Neuman BC, Theodore Y (1991) The evolution of the Kerberos authentication service. In: European Conf. Proc., pp 295–313

  8. Tsai J-L (2008) Efficient multi-server authentication scheme based on one-way hash function without verification table. Comput Secur 27(3):115–121. https://doi.org/10.1016/j.cose.2008.04.001

    Article  Google Scholar 

  9. Zhu H (2015) A provable one-way authentication key agreement scheme with user anonymity for multi-server environment. KSII Trans Internet Inf Syst 9(2):811–828. https://doi.org/10.3837/tiis.2015.02.019

    Article  Google Scholar 

  10. Lee C-C, Lou D-C, Li C-T, Hsu C-W (2014) An extended chaotic-maps-based protocol with key agreement for multiserver environments. Nonlinear Dyn 76(1):853–866. https://doi.org/10.1007/s11071-013-1174-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Banerjee S, Dutta MP, Bhunia CT (2015) An improved smart card based anonymous multi-server remote user authentication scheme. Int J Smart Home 9(5):11–22. https://doi.org/10.14257/ijsh.2015.9.5.02

    Article  Google Scholar 

  12. Sun Q, Moon J, Choi Y, Won D (2016) An improved dynamic ID based remote user authentication scheme for multi-server environment. In: Huang X, Xiang Y, Li K-C (eds) Green, pervasive, and cloud computing. Springer, Cham, pp 229–242

    Chapter  Google Scholar 

  13. Li X et al (2016) A novel chaotic maps-based user authentication and key agreement protocol for multi-server environments with provable security. Wirel Pers Commun 89(2):569–597. https://doi.org/10.1007/s11277-016-3293-x

    Article  Google Scholar 

  14. Irshad A et al (2018) An enhanced and provably secure chaotic map-based authenticated key agreement in multi-server architecture. Arab J Sci Eng 43(2):811–828. https://doi.org/10.1007/s13369-017-2764-z

    Article  Google Scholar 

  15. Jangirala S, Mukhopadhyay S, Das AK (2017) A multi-server environment with secure and efficient remote user authentication scheme based on dynamic ID using smart cards. Wirel Pers Commun 95(3):2735–2767. https://doi.org/10.1007/s11277-017-3956-2

    Article  Google Scholar 

  16. Ying B, Nayak A (2019) Lightweight remote user authentication protocol for multi-server 5G networks using self-certified public key cryptography. J Netw Comput Appl 131:66–74. https://doi.org/10.1016/j.jnca.2019.01.017

    Article  Google Scholar 

  17. Meshram C, Obaidat MS, Tembhurne JV, Shende SW, Kalare KW, Meshram SG (2020) A lightweight provably secure digital short-signature technique using extended chaotic maps for human-centered IoT systems. IEEE Syst J. https://doi.org/10.1109/JSYST.2020.3043358

    Article  Google Scholar 

  18. Meshram C, Ibrahim RW, Obaid AJ, Meshram SG, Meshram A, El-Latif AMA (2020) Fractional chaotic maps based short signature scheme under human-centered IoT environments. J Adv Res. https://doi.org/10.1016/j.jare.2020.08.015

    Article  Google Scholar 

  19. Meshram C, Lee CC, Meshram SG, Meshram A (2020) OOS-SSS: an efficient online/offline subtree-based short signature scheme using Chebyshev chaotic maps for wireless sensor network. IEEE Access 8:80063–80073. https://doi.org/10.1109/ACCESS.2020.2991348

    Article  Google Scholar 

  20. Meshram C, Li C-T, Meshram SG (2019) An efficient online/offline ID-based short signature procedure using extended chaotic maps. Soft Comput 23(3):747–753. https://doi.org/10.1007/s00500-018-3112-2

    Article  MATH  Google Scholar 

  21. Meshram C, Ibrahim RW, Deng L, Shende SW, Meshram SG, Barve SK (2021) A robust smart card and remote user password-based authentication protocol using extended chaotic maps under smart cities environment. Soft Comput 25(15):10037–10051. https://doi.org/10.1007/s00500-021-05929-5

    Article  Google Scholar 

  22. Meshram C, Obaidat MS, Meshram A (2020) An efficient robust lightweight remote user authentication protocol using extended chaotic maps. In: Proceedings of 2020 International Conference on Computer, Information and Telecommunication Systems CITS 2020, pp 8–13. https://doi.org/10.1109/CITS49457.2020.9232622

  23. Datta D et al (2021) An efficient sound and data steganography based secure authentication system. Comput Mater Contin 67(1):723–751. https://doi.org/10.32604/cmc.2021.014802

    Article  Google Scholar 

  24. Meshram C, Lee CC, Ranadive AS, Li CT, Meshram SG, Tembhurne JV (2020) A subtree-based transformation model for cryptosystem using chaotic maps under cloud computing environment for fuzzy user data sharing. Int J Commun Syst 33(7):1–15. https://doi.org/10.1002/dac.4307

    Article  Google Scholar 

  25. Meshram C, Lee C-C, Meshram SG, Li C-T (2019) An efficient ID-based cryptographic transformation model for extended chaotic-map-based cryptosystem. Soft Comput 23(16):6937–6946. https://doi.org/10.1007/s00500-018-3332-5

    Article  MATH  Google Scholar 

  26. Meshram C, Ibrahim RW, Obaidat MS, Sadoun B, Meshram SG, Tembhurne JV (2021) An effective mobile-healthcare emerging emergency medical system using conformable chaotic maps. Soft Comput 25(14):8905–8920. https://doi.org/10.1007/s00500-021-05781-7

    Article  Google Scholar 

  27. Gaikwad VP, Tembhurne JV, Meshram C, Lee C-C (2021) Provably secure lightweight client authentication scheme with anonymity for TMIS using chaotic hash function. J Supercomput. https://doi.org/10.1007/s11227-020-03553-y

    Article  Google Scholar 

  28. Kumar P et al (2021) PPSF: a privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans Netw Sci Eng. https://doi.org/10.1109/TNSE.2021.3089435

    Article  Google Scholar 

  29. Wang W, Xu H, Alazab M, Gadekallu TR, Han Z, Su C (2021) Blockchain-based reliable and efficient certificateless signature for IIoT devices. IEEE Trans Ind Inform. https://doi.org/10.1109/TII.2021.3084753

    Article  Google Scholar 

  30. Shunmuganathan S, Saravanan RD, Palanichamy Y (2015) Secure and efficient smart-card-based remote user authentication scheme for multiserver environment. Can J Electr Comput Eng 38(1):20–30. https://doi.org/10.1109/CJECE.2014.2344447

    Article  Google Scholar 

  31. Mason JC, Handscomb DC (2002) Chebyshev polynomials. CRC Press

    Book  Google Scholar 

  32. Bergamo P, D’Arco P, De Santis A, Kocarev L (2005) Security of public-key cryptosystems based on Chebyshev polynomials. IEEE Trans Circuits Syst I Regul Pap 52(7):1382–1393. https://doi.org/10.1109/TCSI.2005.851701

    Article  MathSciNet  MATH  Google Scholar 

  33. Haubold HJ, Mathai AM, Saxena RK (2011) Mittag–Leffler functions and their applications. J Appl Math 2011:298628. https://doi.org/10.1155/2011/298628

    Article  MathSciNet  MATH  Google Scholar 

  34. Rahman G, Baleanu D, Al Qurashi M, Purohit SD, Mubeen S, Arshad M (2017) The extended Mittag–Leffler function via fractional calculus. J Nonlinear Sci Appl 10(8):4244–4253. https://doi.org/10.2243/jnsa.010.08.19

    Article  MathSciNet  MATH  Google Scholar 

  35. Rashid S, Sultana S, Hammouch Z, Jarad F, Hamed YS (2021) Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag–Leffler kernels and application. Chaos Solitons Fractals 151:111204. https://doi.org/10.1016/j.chaos.2021.111204

    Article  MathSciNet  Google Scholar 

  36. Han S, Chang E (2009) Chaotic map based key agreement with/out clock synchronization. Chaos Solitons Fractals 39(3):1283–1289. https://doi.org/10.1016/j.chaos.2007.06.030

    Article  MathSciNet  MATH  Google Scholar 

  37. Lee C-C, Hsu C-W (2013) A secure biometric-based remote user authentication with key agreement scheme using extended chaotic maps. Nonlinear Dyn 71(1):201–211. https://doi.org/10.1007/s11071-012-0652-3

    Article  MathSciNet  Google Scholar 

  38. Zhang L (2008) Cryptanalysis of the public key encryption based on multiple chaotic systems. Chaos Solitons Fractals 37(3):669–674. https://doi.org/10.1016/j.chaos.2006.09.047

    Article  MathSciNet  MATH  Google Scholar 

  39. Burrows M, Abadi M, Needham R (1990) A logic of authentication. ACM Trans Comput Syst 8(1):18–36. https://doi.org/10.1145/77648.77649

    Article  MATH  Google Scholar 

  40. Wessels J (2001) Applications of Ban-logic. CMG FINANCE BV 19:1–23

    Google Scholar 

  41. He D, Chen Y, Chen J (2012) Cryptanalysis and improvement of an extended chaotic maps-based key agreement protocol. Nonlinear Dyn 69(3):1149–1157. https://doi.org/10.1007/s11071-012-0335-0

    Article  MathSciNet  MATH  Google Scholar 

  42. He D, Ma M, Zhang Y, Chen C, Bu J (2011) A strong user authentication scheme with smart cards for wireless communications. Comput Commun 34(3):367–374. https://doi.org/10.1016/j.comcom.2010.02.031

    Article  Google Scholar 

  43. Meshram C, Powar PL (2016) An efficient identity-based QER cryptographic scheme. Complex Intell Syst 2(4):285–291. https://doi.org/10.1007/s40747-016-0030-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers of the Journal of Supercomputing for their excellent reviews and helpful commentsand extend their gratitude to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R. G. P. 1/72/42. Agbotiname Lucky Imoize is partly supported by the Nigerian Petroleum Technology Development Fund (PTDF) and the German Academic Exchange Service (DAAD) through the Nigerian-German Postgraduate Program under Grant 57473408.

Author information

Authors and Affiliations

Authors

Contributions

CM and RWI conceived the study; ALI contributed to formal analysis; CM, RWI, and SSJ contributed to investigation, methodology, supervision, validation/visualization, and writing—original draft; CM contributed to resources; SGM and ALI contributed to software; CM, RWI, SSJ, SGM, and ALI performed writing—review & editing.

Corresponding author

Correspondence to Chandrashekhar Meshram.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshram, C., Ibrahim, R.W., Meshram, S.G. et al. An efficient authentication with key agreement procedure using Mittag–Leffler–Chebyshev summation chaotic map under the multi-server architecture. J Supercomput 78, 4938–4959 (2022). https://doi.org/10.1007/s11227-021-04039-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04039-1

Keywords

Navigation