Skip to main content
Log in

Handoff calls’ joining behavior and incentive mechanism in wireless cellular networks with retrial orbit

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In wireless cellular networks, handoff is a key element in providing quality of service and supporting mobility for users. There is an interaction between wireless cellular networks and handoff calls which strategically act to achieve their own objectives. In order to reasonably control the access of handoff calls and achieve the optimization of social network resources, we present a game-theoretic queueing model to investigate the strategic behavior of handoff calls in wireless cellular networks. The noncooperative joining behavior of handoff calls that maximizes their expected net benefit selfishly is considered. Moreover, the socially optimal joining behavior of handoff calls that maximizes their social total welfare is analyzed. The equilibrium and socially optimal strategies of handoff calls are obtained. Counter-intuitively, we find that the socially optimal joining probability is larger than the equilibrium joining probability. In order to eliminate the difference of joining probabilities, an appropriate incentive-payment is proposed to attract handoff calls to join the system actively. In doing so, it is feasible to induce individuals to behave in a socially best way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barik PK, Shukla A, Datta R, Singhal C (2020) A resource sharing scheme for intercell D2D communication in cellular networks: a repeated game theoretic approach. IEEE Trans Veh Technol 69(7):7806–7820

    Google Scholar 

  2. Bu S, Yu F, Cai Y, Liu X (2012) When the smart grid meets energy-efficient communications: green wireless cellular networks powered by the smart grid. IEEE Trans Wireless Commun 11(8):3014–3024

    Google Scholar 

  3. Cai X, Liu X, Qu Z (2019) Game theory-based device-to-device network access algorithm for heterogeneous networks. J Supercomput 75(5):2423–2435

    Google Scholar 

  4. Chang MK, Mei YJ, Chan YW, Wu MY, Chen WR (2020) Matching game-based hierarchical spectrum sharing in cooperative cognitive radio networks. J Supercomput 76(8):6195–6218

    Google Scholar 

  5. Charilas D, Panagopoulos A (2010) A survey on game theory applications in wireless networks. Comput Netw 54(18):3421–3430

    MATH  Google Scholar 

  6. Chen H, Zhao D, Chen Q, Chai R (2020) Joint computation offloading and radio resource allocations in small-cell wireless cellular networks. IEEE Trans Green Commun Netw 4(3):745–758

    Google Scholar 

  7. Choi J (2020) On fast retrial for two-step random access in MTC. IEEE Internet Things J 8(3):1428–1436

    Google Scholar 

  8. Dimitriou I (2017) Dynamic balancing in finite processor sharing queues with guard bandwidth policy, multiclass retrial users and signals. Perform Eval 114:1–15

    Google Scholar 

  9. Do TV, Do NH, Horváth Á, Wang JT (2015) Modelling opportunistic spectrum renting in mobile cellular networks. J Netw Comput Appl 52:129–138

    Google Scholar 

  10. Do TV, Wüchner P, Bérczes T, Sztrik J, Meer HD (2014) A new finite-source queueing model for mobile cellular networks applying spectrum renting. Asia-Pacific J Oper Res 31(2):1440004

    MathSciNet  MATH  Google Scholar 

  11. Goudarzi S, Anisi MH, Ciuonzo D, Soleymani SA, Pescape A (2021) Employing unmanned aerial vehicles for improving handoff using cooperative game theory. IEEE Trans Aerosp Electron Syst 57(2):776–794

    Google Scholar 

  12. Guo Y, Duan L, Zhang R (2015) Optimal pricing and load sharing for energy saving with cooperative communications. IEEE Trans Wireless Commun 15(2):951–964

    Google Scholar 

  13. Hassin R, Haviv M (2003) To queue or not to queue: equilibrium behavior in queueing systems. Kluwer Academic Publishers Press, Boston

    MATH  Google Scholar 

  14. Huo L, Jiang D (2019) Stackelberg game-based energy-efficient resource allocation for 5G cellular networks. Telecommun Syst 72(3):377–388

    Google Scholar 

  15. Jang HS, Baek JH (2021) Optimal TAL-based registration with cell-based central policy in mobile cellular networks: a semi-Markov process approach. J Supercomput 77:9172–9189

    Google Scholar 

  16. Kim B, Kim J (2020) Stability of a multi-class multi-server retrial queueing system with service times depending on classes and servers. Queueing Syst 94(1–2):129–146

    MathSciNet  MATH  Google Scholar 

  17. Kim C, Klimenok VI, Dudin AN (2014) Analysis and optimization of guard channel policy in cellular mobile networks with account of retrials. Comput Oper Res 43:181–190

    MathSciNet  MATH  Google Scholar 

  18. Leshem A, Zehavi E (2008) Cooperative game theory and the gaussian interference channel. IEEE J Sel Areas Commun 26(7):1078–1088

    Google Scholar 

  19. Li D, Saad W, Guvenc I, Mehbodniya A, Adachi F (2015) Decentralized energy allocation for wireless networks with renewable energy powered base stations. IEEE Trans Commun 63(6):2126–2142

    Google Scholar 

  20. Li M (2017) Queueing analysis of unicast IPTV with adaptive modulation and coding in wireless cellular networks. IEEE Trans Veh Technol 66(10):9241–9253

    Google Scholar 

  21. Li W, Chen H, Agrawal D (2005) Performance analysis of handoff schemes with preemptive and nonpreemptive channel borrowing in integrated wireless cellular networks. IEEE Trans Wireless Commun 4(3):1222–1233

    Google Scholar 

  22. Li W, Fang Y (2008) Performance evaluation of wireless cellular networks with mixed channel holding times. IEEE Trans Wireless Commun 7(6):2154–2160

    Google Scholar 

  23. Liu B, Zhao Y (2020) Tail asymptotics for the retrial queue with non-preemptive priority. Queueing Syst 96(1):169–199

    MathSciNet  MATH  Google Scholar 

  24. Liu G, Yu F, Ji H, Leung V (2015) Virtual resource management in green cellular networks with shared full-duplex relaying and wireless virtualization: a game-based approach. IEEE Trans Veh Technol 65(9):7529–7542

    Google Scholar 

  25. Madan R, Boyd S, Lall S (2009) Fast algorithms for resource allocation in wireless cellular networks. IEEE/ACM Trans Networking 18(3):973–984

    Google Scholar 

  26. Neuts M (1981) Matrix-geometric solution stochastic models. Johns Hokpins University Press, Baltimore

    MATH  Google Scholar 

  27. Ogidiaka E, Nonyelum OF, Irhebhude ME (2021) Game-theoretic resource allocation algorithms for device-to-device communications in fifth generation cellular networks: a review. Int J Inf Eng Electron Bus 13(1):44–51

    Google Scholar 

  28. Phung-Duc T (2019) Retrial queueing models: a survey on theory and applications. arXiv preprint

  29. Piran MJ, Tran NH, Suh DY, Song JB, Hong CS, Han Z (2017) QoE-driven channel allocation and handoff management for seamless multimedia in cognitive 5G cellular networks. IEEE Trans Veh Technol 66(7):6569–6585

    Google Scholar 

  30. Sanguanpuak T, Niyato D, Rajatheva N, Latva-Aho M (2021) Radio resource sharing and edge caching with latency constraint for local 5G operator: geometric programming meets Stackelberg game. IEEE Trans Mob Comput 20(2):707–721

    Google Scholar 

  31. Sgora A, Vergados D (2009) Handoff prioritization and decision schemes in wireless cellular networks: a survey. IEEE Commun Surv Tut 11(4):57–77

    Google Scholar 

  32. Shruti S, Rakhee R (2020) Analysis of spectrum sensing and spectrum access in cognitive radio networks with heterogeneous traffic and p-retry buffering. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2020.3042836

    Article  Google Scholar 

  33. Sun W, Li S, Tian N (2013) Equilibrium mixed strategies of customers in an unobservable queue with multiple vacations. Quality Technol Quant Manag 10(4):389–421

    Google Scholar 

  34. Sun Y, Feng G, Qin S, Liang YC, Yum TSP (2017) The SMART handoff policy for millimeter wave heterogeneous cellular networks. IEEE Trans Mob Comput 17(6):1456–1468

    Google Scholar 

  35. Tripathi N, Reed J, Vanlandinoham H (1998) Handoff in cellular systems. IEEE Pers Commun 5(6):36–37

    Google Scholar 

  36. Trivedi K, Dharmaraja S, Ma X (2002) Analytic modeling of handoffs in wireless cellular networks. Inf Sci 148(1–4):155–166

    MathSciNet  MATH  Google Scholar 

  37. Wang C, Liang C, Yu FR, Chen Q, Tang L (2017) Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans Wireless Commun 16(8):4924–4938

    Google Scholar 

  38. Wang JT, Li WW (2016) Noncooperative and cooperative joining strategies in cognitive radio networks with random access. IEEE Trans Veh Technol 65(7):5624–5636

    Google Scholar 

  39. Wang JT, Zhang Y, Li WW (2017) Strategic joining and optimal pricing in the cognitive radio system with delay-sensitive secondary users. IEEE Trans Cognit Commun Netw 3(3):298–312

    Google Scholar 

  40. Wang S, Deng H, Xiong R, Liu G, Liu Y, Liu HM (2021) A multi-objective model-based vertical handoff algorithm for heterogeneous wireless networks. EURASIP J Wirel Commun Netw 75:1–18

    Google Scholar 

  41. Wu J, Wong EWM, Chan YC, Zukerman M (2020) Power consumption and GoS tradeoff in cellular mobile networks with base station sleeping and related performance studies. IEEE Trans Green Commun Netw 4(4):1024–1036

    Google Scholar 

  42. Xiao M, Shroff N, Chong E (2003) A utility-based power-control scheme in wireless cellular systems. IEEE/ACM Trans Netw 11(2):210–221

    Google Scholar 

  43. Xin J, Zhu Q, Liang G, Zhang T (2019) Performance analysis of D2D underlying cellular networks based on dynamic priority queuing model. IEEE Access 7:27479–27489

    Google Scholar 

  44. Yang D, Fang X, Xue G (2012) Game theory in cooperative communications. IEEE Wirel Commun 19(2):44–49

    Google Scholar 

  45. Yu B, Pang W, Troutt M, Hou S (2009) Objective comparisons of the optimal portfolios corresponding to different utility functions. Eur J Oper Res 199(2):604–610

    MathSciNet  MATH  Google Scholar 

  46. Zhang X, Sarkar S, Bhuyan A, Kasera SK, Ji M (2021) A non-cooperative game-based distributed beam scheduling framework for 5G millimeter-wave cellular networks. IEEE Trans Wireless Commun 69(7):7806–7820

    Google Scholar 

  47. Zhang Y, Tourrilhes J, Zhang ZL, Sharma P (2021) Improving SD-WAN resilience: from vertical handoff to WAN-aware MPTCP. IEEE Trans Netw Serv Manag 18(1):347–361

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their useful comments and valuable suggestions to help us improve the quality of this article.

Funding

This work was supported by National Nature Science Foundation of China under grants 11871116 and 11971074, and also by the Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjiang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In order to simplify the matrices with complicated construction, we define some symbols as following: \(\mu_{1} = r_{1} + h_{1} ,\;\mu_{2} = r_{2} + h_{2}\).

  1. 1)

    The block \({\mathbf{B}}_{0}\) is a \((c + 1)(c + 2)/2\) dimensional matrix with its elements given by:

    $${\mathbf{B}}_{0} = \left( {\begin{array}{*{20}c} {{\mathbf{B}}_{00} } & {{\mathbf{B}}_{01} } & {} & {} & {} & {} \\ {{\mathbf{B}}_{10} } & {{\mathbf{B}}_{11} } & {{\mathbf{B}}_{12} } & {} & {} & {} \\ {} & {{\mathbf{B}}_{21} } & {{\mathbf{B}}_{22} } & {{\mathbf{B}}_{23} } & {} & {} \\ {} & {} & \ddots & \ddots & \ddots & {} \\ {} & {} & {} & {{\mathbf{B}}_{c - 1,c - 2} } & {{\mathbf{B}}_{c - 1,c - 1} } & {{\mathbf{B}}_{c - 1,c} } \\ {} & {} & {} & {} & {{\mathbf{B}}_{c,c - 1} } & {B_{c,c} } \\ \end{array} } \right).$$
    (25)

    Furthermore, its elements are shown as follows:

    $$ {\mathbf{B}}_{0,0} = \left( {\begin{array}{*{20}c} { - \varphi_{0} } & {\lambda_{2} \beta_{0} } & {} & {} & {} & {} \\ {\mu_{2} } & { - \varphi_{1} } & {\lambda_{2} \beta_{1} } & {} & {} & {} \\ {} & {2\mu_{2} } & { - \varphi_{2} } & {\lambda_{2} \beta_{2} } & {} & {} \\ {} & {} & \ddots & \ddots & \ddots & {} \\ {} & {} & {} & {(c - 1)\mu_{2} } & { - \varphi_{c - 1} } & {\lambda_{2} \beta_{c - 1} } \\ {} & {} & {} & {} & {c\mu_{2} } & { - \varphi_{c} } \\ \end{array} } \right)_{(c + 1) \times (c + 1)} , $$
    (26)

    where \(\varphi_{k} = - (\lambda_{1} q\alpha_{k} + \lambda_{2} \beta_{k} + k\mu_{2} ),k = 0,1 \cdots c - 1\), \(\varphi_{c} = - (\lambda_{1} q\omega + c\mu_{2} )\).

    $$ {\mathbf{B}}_{i,i} = \left( {\begin{array}{*{20}c} { - \tau_{i} } & {\lambda_{2} \beta_{i} } & {} & {} & {} & {} \\ {\mu_{2} } & { - (\tau_{i + 1} + \mu_{2} )} & {\lambda_{2} \beta_{i + 1} } & {} & {} & {} \\ {} & {2\mu_{2} } & { - (\tau_{i + 2} + 2\mu_{2} )} & {\lambda_{2} \beta_{i + 2} } & {} & {} \\ {} & {} & \ddots & \ddots & \ddots & {} \\ {} & {} & {} & {(c - i - 1)\mu_{2} } & { - (\tau_{c - 1} + (c - i - 1)\mu_{2} )} & {\lambda_{2} \beta_{c - 1} } \\ {} & {} & {} & {} & {(c - i)\mu_{2} } & { - (\tau_{c} + (c - i)\mu_{2} )} \\ \end{array} } \right)_{(c + 1 - i) \times (c + 1 - i)} , $$
    (27)

    where \(\tau_{k} = - (\lambda_{1} q\alpha_{k} + \lambda_{2} \beta_{k} + i\mu_{1} ),k = i, \cdots ,c - 1\), \(\tau_{c} = - (\lambda_{1} q\omega + i\mu_{1} )\). \(B_{cc} = - (\lambda_{1} q + c\mu_{1} )\).

    $$ {\mathbf{B}}_{i,i + 1} = \left( {\begin{array}{*{20}c} {\lambda_{1} q\alpha_{i} } & {} & {} & {} \\ {} & {\lambda_{1} q\alpha_{i + 1} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {\lambda_{1} q\alpha_{c - 1} } \\ 0 & 0 & 0 & 0 \\ \end{array} } \right)_{(c + 1 - i) \times (c - i)} i = 0,1, \cdots ,c - 1. $$
    (28)
    $$ {\mathbf{B}}_{i + 1,i} = \left( {\begin{array}{*{20}c} {(i + 1)\mu_{1} } & {} & {} & {} & 0 \\ {} & {(i + 1)\mu_{1} } & {} & {} & 0 \\ {} & {} & \ddots & {} & 0 \\ {} & {} & {} & {(i + 1)\mu_{1} } & 0 \\ \end{array} } \right)_{(c - i) \times (c + 1 - i)} i = 0,1, \cdots ,c - 1. $$
    (29)
  2. 2)

    The block \({\mathbf{A}}_{0}\) is a \((c + 1)(c + 2)/2\) dimensional matrix with its elements given by:

    $$ {\mathbf{A}}_{0} = \left( {\begin{array}{*{20}c} {{\mathbf{D}}_{0} } & {} & {} & {} & {} \\ {} & {{\mathbf{D}}_{1} } & {} & {} & {} \\ {} & {} & {{\mathbf{D}}_{2} } & {} & {} \\ {} & {} & {} & \ddots & {} \\ {} & {} & {} & {} & {{\mathbf{D}}_{c} } \\ \end{array} } \right), $$
    (30)

    where \({\mathbf{D}}_{i} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & {\lambda_{1} q\omega } \\ \end{array} } \right)_{(c + 1 - i) \times (c + 1 - i)} i = 0,1, \cdots ,c\).

  3. 3)

    The block \({\mathbf{A}}_{2}\) is a \((c + 1)(c + 2)/2\) dimensional matrix with its elements given by:

    $$ {\mathbf{A}}_{2} = \left( {\begin{array}{*{20}c} 0 & {{\mathbf{E}}_{0} } & 0 & \cdots & 0 \\ 0 & 0 & {{\mathbf{E}}_{1} } & 0 & 0 \\ 0 & 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & {{\mathbf{E}}_{c - 1} } \\ 0 & 0 & 0 & \cdots & 0 \\ \end{array} } \right), $$
    (31)

    where \({\mathbf{E}}_{i} = \left( {\begin{array}{*{20}c} \delta & 0 & \cdots & 0 \\ 0 & \delta & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \delta \\ 0 & 0 & 0 & 0 \\ \end{array} } \right)_{(c + 1 - i) \times (c - i)} i = 0,1, \cdots ,c - 1\).

  4. 4)

    The block \({\mathbf{A}}_{1}\) is a \((c + 1)(c + 2)/2\) dimensional matrix with its elements given by:

    $$ {\mathbf{A}}_{1} = \left( {\begin{array}{*{20}c} {{\mathbf{A}}_{00} } & {{\mathbf{A}}_{01} } & {} & {} & {} & {} \\ {{\mathbf{A}}_{10} } & {{\mathbf{A}}_{11} } & {{\mathbf{A}}_{12} } & {} & {} & {} \\ {} & {{\mathbf{A}}_{21} } & {{\mathbf{A}}_{22} } & {{\mathbf{A}}_{23} } & {} & {} \\ {} & {} & \ddots & \ddots & \ddots & {} \\ {} & {} & {} & {{\mathbf{A}}_{c - 1,c - 2} } & {{\mathbf{A}}_{c - 1,c - 1} } & {{\mathbf{A}}_{c - 1,c} } \\ {} & {} & {} & {} & {{\mathbf{A}}_{c,c - 1} } & {A_{c,c} } \\ \end{array} } \right). $$
    (32)

Its elements are shown as follows.

$$ {\mathbf{A}}_{0,0} = \left( {\begin{array}{*{20}c} { - \varphi_{10} } & {\lambda_{2} \beta_{0} } & {} & {} & {} & {} \\ {\mu_{2} } & { - \varphi_{11} } & {\lambda_{2} \beta_{1} } & {} & {} & {} \\ {} & {2\mu_{2} } & { - \varphi_{12} } & {\lambda_{2} \beta_{2} } & {} & {} \\ {} & {} & \ddots & \ddots & \ddots & {} \\ {} & {} & {} & {(c - 1)\mu_{2} } & { - \varphi_{1c - 1} } & {\lambda_{2} \beta_{c - 1} } \\ {} & {} & {} & {} & {c\mu_{2} } & { - \varphi_{1c} } \\ \end{array} } \right)_{(c + 1) \times (c + 1)} , $$
(33)

where \(\varphi_{1k} = - (\lambda_{1} q\alpha_{k} + \lambda_{2} \beta_{k} + k\mu_{2} + \delta ),k = 0,1 \cdots c - 1\), \(\varphi_{1c} = - (\lambda_{1} q\omega + c\mu_{2} )\).

$${\mathbf{A}}_{i,i} = \left( {\begin{array}{*{20}c} { - \tau_{1i} } & {\lambda_{2} \beta_{i} } & {} & {} & {} & {} \\ {\mu_{2} } & { - ( - \tau_{1i + 1} + \mu_{2} )} & {\lambda_{2} \beta_{i + 1} } & {} & {} & {} \\ {} & {2\mu_{2} } & { - ( - \tau_{1i + 1} + 2\mu_{2} )} & {\lambda_{2} \beta_{i + 2} } & {} & {} \\ {} & {} & \ddots & \ddots & \ddots & {} \\ {} & {} & {} & {(c - i - 1)\mu_{2} } & { - ( - \tau_{1c - 1} + (c - i - 1)\mu_{2} )} & {\lambda_{2} \beta_{c - 1} } \\ {} & {} & {} & {} & {(c - i)\mu_{2} } & { - ( - \tau_{1c} + (c - i)\mu_{2} )} \\ \end{array} } \right)_{(c + 1 - i) \times (c + 1 - i)},$$
(34)

where \(\tau_{1k} = - (\lambda_{1} q\alpha_{k} + \lambda_{2} \beta_{k} + i\mu_{1} + \delta ),k = i, \cdots ,c - 1,\), \(\tau_{1c} = - (\lambda_{1} q\omega + i\mu_{1} )\), \(i = 1, \cdots ,c - 1\). \(A_{cc} = - (\lambda_{1} q + c\mu_{1} )\).

$$ {\mathbf{A}}_{i,i + 1} = \left( {\begin{array}{*{20}c} {\lambda_{1} q\alpha_{i} } & {} & {} & {} \\ {} & {\lambda_{1} q\alpha_{i + 1} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {\lambda_{1} q\alpha_{c - 1} } \\ 0 & 0 & 0 & 0 \\ \end{array} } \right)_{(c + 1 - i) \times (c - i)} i = 0,1, \cdots ,c - 1. $$
(35)
$$ {\mathbf{A}}_{i + 1,i} = \left( {\begin{array}{*{20}c} {(i + 1)\mu_{1} } & {} & {} & {} & 0 \\ {} & {(i + 1)\mu_{1} } & {} & {} & 0 \\ {} & {} & \ddots & {} & 0 \\ {} & {} & {} & {(i + 1)\mu_{1} } & 0 \\ \end{array} } \right)_{(c - i) \times (c + 1 - i)} i = 0,1, \cdots ,c - 1. $$
(36)

Appendix 2

2.1 Proof of Theorem 2

We mark a type-1 call which arrives in the system, analyze the equilibrium strategy and discuss it in three cases.

Case 1: \(R < C \cdot e^{{\varepsilon E(T_{1} (0))}}\). In this case, even if no other type-1 call joins, the expected net benefit of a type-1 call which joins is negative. Therefore, the unique pure-strategy equilibrium is balking, i.e., \(q_{e} = 0\). Moreover, balking is a dominant strategy.

Case 2: \(R > C \cdot e^{{\varepsilon E(T_{1} (1))}}\). In this case, even if all type-1 calls join, they all enjoy a positive expected net benefit. Therefore, the unique pure-strategy equilibrium is joining, i.e., \(q_{e} = 1\). Moreover, joining is a dominant strategy.

Case 3: \(C \cdot e^{{\varepsilon E(T_{1} (0))}} \le R \le C \cdot e^{{\varepsilon E(T_{1} (1))}}\). In this case, we can find a unique mixed-strategy equilibrium \(q_{ee} \in [0,1]\) which can be derived by solving equation \(R - C \cdot e^{{\varepsilon E(T_{1} (q_{ee} ))}} = 0\). Then, any strategy between joining and balking is a best response. Therefore, \(q_{e} = q_{ee}\). We complete the proof.

Appendix 3

3.1 Proof of Theorem 3

We need to know the monotonicity of the function \(S(q)\) before analyzing the problem of maximizing \(S(q)\) for \(q \in [0,1]\).

Taking the derivative of function \(S(q)\) with respect to \(q\), we get

$$S^{\prime}(q) = {\lambda_{1}}^{e} R - C \cdot e^{{\varepsilon E(N_{1} (q))}} \cdot \varepsilon E^{\prime}(N_{1} (q)).$$
(37)

According to Remark 2, we think that \(E(N_{1} (q)\) should be convex in \(q\). Both \(e^{{\varepsilon E(N_{1} (q))}}\) and \(E^{\prime}(N_{1} (q))\) are increasing in \(q\). Both \(C\) and \(\varepsilon\) are positive. Hence, \(S^{\prime}(q)\) is decreasing in \(q\).

Next, we consider the following three cases:

Case 1: \({\lambda_{1}}^{e} R > C \cdot e^{{\varepsilon E(N_{1} (q))}} \cdot \varepsilon E^{\prime}(N_{1} (q))\) for \(q \in [0,1]\). In this case, we observe that \(S^{\prime}(q) > 0\) for any \(q \in [0,1]\), which implies that \(S(q)\) is strictly increasing in \(q\). The unique maximum is attained at \(q = 1\). Thus, the best response of type-1 calls is to join the system with probability \(q^{*} = 1\). That is, \(q^{*} = 1\) is socially optimal joining strategy.

Case 2: \({\lambda_{1}}^{e} R < C \cdot e^{{\varepsilon E(N_{1} (q))}} \cdot \varepsilon E^{\prime}(N_{1} (q))\) for \(q \in [0,1]\). In this case, we observe that \(S^{\prime}(q) < 0\) for any \(q \in [0,1]\), which implies that \(S(q)\) is strictly decreasing in \(q\). The unique maximum is attained at \(q = 0\). Thus, the best response of type-1 calls is to join the system with probability \(q^{*} = 0\). That is, \(q^{*} = 0\) is socially optimal joining strategy.

Case 3: There is a \(q^{\prime}\) which satisfies \({\lambda_{1}}^{e} R = C \cdot e^{{\varepsilon E(N_{1} (q^{\prime}))}} \cdot \varepsilon E^{\prime}(N_{1} (q^{\prime}))\). In this case, we know that \(S^{\prime}(q) \ge 0\) for \(q \in [0,q^{\prime}]\) and \(S^{\prime}(q) < 0\) for \(q \in (q^{\prime},1]\). The unique maximum is attained at \(q^{\prime}\). Thus, the best response of type-1 calls is to join the system with probability \(q^{*} = q^{\prime}\). That is, \(q^{*} = q^{\prime}\) is a socially optimal joining strategy.

We complete the proof.

Appendix 4

4.1 Proof of Lemma 2

Let

$$Y(q) = e^{{\varepsilon E(T_{1} (q))}} ,\;L(q) = ({\lambda_{1}}^{e} )^{ - 1} e^{{\varepsilon E(N_{1} (q))}} \cdot \varepsilon E^{\prime}(N_{1} (q)).$$

According to (20) and (22), we obtain that \(Y(0) < Y(1)\), \(L(0) < L(1)\), \(Y(0) > L(0)\) and \(Y(1) > L(1)\). Since the relationship of the above inequalities, we only need to compare \(Y(0)\) and \(L(1)\) in the following two cases.

1.If \(Y(0) > L(1)\), we will have the following five subcases.

Case1a: if \(R/C < L(0)\), then \(q^{*} = q^{\prime} = 0\).

Case1b: if \(L(0) \le R/C \le L(1)\), then \(q^{*} = q^{\prime} \in [0,1]\), and \(q_{e} = 0\). Therefore, the inequality \(q^{*} \ge q_{e}\) holds.

Case1c: if \(L(1) < R/C < Y(0)\), \(q^{*} = 1\), and \(q_{e} = 0\). Thus, we obtain \(q^{*} > q_{e}\).

Case1d: if \(Y(0) \le R/C \le Y(1)\), \(q_{e} = q_{ee}\), and \(q^{*} = 1\). We get \(q^{*} \ge q_{e}\).

Case1f: if \(R/C > Y(1)\), \(q^{*} = q_{e} = 1\).

2. \(Y(0) \le L(1)\), the five subcases are given as follows.

Case2a: if \(R/C < L(0)\), then \(q^{*} = q_{e} = 0\).

Case2b: if \(L(0) \le R/C \le Y(0)\), then \(q^{*} = q^{\prime} \in [0,1]\), and \(q_{e} = 0\). Therefore, the inequality \(q^{*} \ge q_{e}\) holds.

Case2c: if \(Y(0) < R/C < L(1)\), \(q^{*} = q^{\prime}\), and \(q_{e} = q_{ee}\). The above numerical experiments imply this result, as shown in Figs. 1213. Thus, we can obtain \(q^{*} > q_{e}\).

Case2d: if \(L(1) \le R/C \le Y(1)\), \(q_{e} = q_{ee}\), and \(q^{*} = 1\). We get \(q^{*} \ge q_{e}\).

Case2f: if \(R/C > Y(1)\), \(q^{*} = q_{e} = 1\).

Appendix 5

5.1 Proof of Theorem 4

The system administrator can give an incentive-payment \(P\) to the type-1 calls that decide to join the system. The reward of type-1 calls that have been served becomes \(R + P\). But the socially objective function is the same with (21) since the incentive-payment \(P\) is not included in the socially objective function with a transfer of income from one social group. Thus, the resulting socially optimal joining probability remains the same with (22). However, the equilibrium of joining with probability is given by the following theorem.

In the considered wireless cellular network system, an equilibrium strategy “joining with probability \(q_{e}\)” is given by

$$ q_{e} = \left\{ {\begin{array}{*{20}l} {0,\;\;\;{\text{if }}R + P < C \cdot e^{{\varepsilon E(T_{1} (0))}} ,} \hfill \\ {q_{ee} {,}\;{\text{if }}C \cdot e^{{\varepsilon E(T_{1} (0))}} \le R + P \le C \cdot e^{{\varepsilon E(T_{1} (1))}} ,} \hfill \\ {1,\;\;\;\;{\text{if }}R + P > C \cdot e^{{\varepsilon E(T_{1} (1))}} ,} \hfill \\ \end{array} } \right. $$
(38)

where \(q_{ee}\) is the solution to equation \(R + P - C \cdot e^{{\varepsilon E(T_{1} (q))}} = 0\).

We will discuss the following three cases:

Case 1: When \({\lambda_{1}}^{e} R < C \cdot e^{{\varepsilon E(N_{1} (q))}} \cdot \varepsilon E^{\prime}(N_{1} (q))\) for \(\forall q \in [0,1]\), the socially optimal joining probability is \(q^{*} = 0\). If we let \(P = C(e^{{\varepsilon E(T_{1} (0))}} - ({\lambda_{1}}^{e} )^{ - 1} \varepsilon \cdot e^{{\varepsilon E(N_{1} (0))}} \cdot E^{\prime}(N_{1} (0)))\), then \(R + P\;{ < }\;{\text{C}} \cdot e^{{\varepsilon E(T_{1} (0))}}\), which is the condition that the equilibrium joining probability is 0. Therefore,

$$P = C(e^{{\varepsilon E(T_{1} (0))}} - ({\lambda_{1}}^{e} )^{ - 1} \varepsilon \cdot e^{{\varepsilon E(N_{1} (0))}} \cdot E^{\prime}(N_{1} (0)))$$
(39)

is the appropriate incentive-payment that makes the equilibrium joining probability coincide with the socially optimal joining probability, which gives the first branch of (24).

Case 2: When \(\lambda_{1}^{e} R > C \cdot e^{{\varepsilon E(N_{1} (q))}} \cdot \varepsilon E^{\prime}(N_{1} (q)) \, \) for \(\forall q \in [0,1]\), the socially optimal joining probability is \(q^{*} = 1\). We need to get

$$P = C(e^{{\varepsilon E(T_{1} (1))}} - ({\lambda_{1}}^{e} )^{ - 1} \cdot e^{{\varepsilon E(N_{1} (1))}} \cdot \varepsilon E^{\prime}(N_{1} (1)))$$
(40)

to make the equilibrium joining probability coincide with the socially optimal joining probability. So it follows the third branch of (24).

Case 3: When \(C \cdot e^{{\varepsilon E(N_{1} (0))}} \cdot \varepsilon E^{\prime}(N_{1} (0)) \le {\lambda_{1}}^{e} R \le C \cdot e^{{\varepsilon E(N_{1} (1))}} \cdot \varepsilon E^{\prime}(N_{1} (1))\), the socially optimal joining probability \(q^{\prime}\) which satisfies \({\lambda_{1}}^{e} R = C \cdot e^{{\varepsilon E(N_{1} (q^{\prime}))}} \cdot \varepsilon E^{\prime}(N_{1} (q^{\prime}))\). Then, let \(q_{ee} = q^{\prime}\), and we have that

$$ P = C \cdot e^{{\varepsilon E(T_{1} (q^{\prime}))}} - R. $$
(41)

Thus, we can obtain that the equilibrium joining probability is the same as socially optimal joining probability. We complete the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Guo, Y. Handoff calls’ joining behavior and incentive mechanism in wireless cellular networks with retrial orbit. J Supercomput 78, 5149–5180 (2022). https://doi.org/10.1007/s11227-021-04059-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04059-x

Keywords

Navigation