Skip to main content
Log in

NKA: a pathogen dose-based natural killer cell algorithm and its application to classification

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Inspired by the self/non-self discrimination theory, Forrest et al. proposed a distance-based negative selection algorithm (NSA). However, in the detector generation phase, NSA creates specific antibodies for each antigen based on the mechanism of specific antigen–antibody binding reactions, which lead to an excessive and redundant number of detectors. Moreover, during the detection phase, NSA needs to calculate the matching degree of the antigen with all the detectors, which has a high computational cost and low detection efficiency. This letter presents a novel natural killer cell algorithm (NKA) inspired by the mechanism of NK cells constructing phenotype detectors based on pathogen dose, which is a non-specific immune mechanism. NKA defines dose and phenotype detector, optimizes the detectors based on the memory evolution mechanism of phenotype, then establishes k-d tree for the optimized phenotype, and pathogens only need to match the dose with the nearest phenotype detector. Experimental results reveal that NKA can not only achieve the best performance through fewer detectors but also has a higher efficiency in the training and detection phase, compared with three versions of the distance-based NSA algorithms. Meanwhile, NKA generates comparable results compared with six popular machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albawi S, Mohammed TA, Al-Zawi S (2018) Understanding of a convolutional neural network. In: Proceedings of 2017 international conference on engineering and technology, ICET 2017, vol 2018, pp 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186

  2. Aldhaheri S, Alghazzawi D, Cheng L, Barnawi A, Alzahrani BA (2020) Artificial immune systems approaches to secure the internet of things: a systematic review of the literature and recommendations for future research. SCI2 J Netw Comput Appl 157:102537

    Article  Google Scholar 

  3. Alqahtani H, Kavakli-Thorne M, Kumar G (2021) Applications of generative adversarial networks (GANs): an updated review. Arch Comput Methods Eng 28(2):525–552. https://doi.org/10.1007/s11831-019-09388-y

    Article  MathSciNet  Google Scholar 

  4. Balachandran S, Dasgupta D, Nino F, Garrett D (2007) A framework for evolving multi-shaped detectors in negative selection. In: 2007 IEEE symposium on foundations of computational intelligence, pp 401–408. https://doi.org/10.1109/FOCI.2007.371503

  5. Chen J, Wang X, Su M, Lin X (2021) A fast detector generation algorithm for negative selection. Appl Intell 51(7):4525–4547. https://doi.org/10.1007/s10489-020-02001-x

    Article  Google Scholar 

  6. Chen Y, Hu X, Fan W, Shen L, Zhang Z, Liu X, Du J, Li H, Chen Y, Li H (2020) Fast density peak clustering for large scale data based on kNN. Knowl Based Syst 187:104824. https://doi.org/10.1016/j.knosys.2019.06.032

    Article  Google Scholar 

  7. Chikh R, Chikhi S (2019) Clustered negative selection algorithm and fruit fly optimization for email spam detection. J Ambient Intell Humaniz Comput 10(1):143–152. https://doi.org/10.1007/s12652-017-0621-2

    Article  Google Scholar 

  8. Fakhari SNS, Moghadam AME (2011) NSSAC: negative selection-based self adaptive classifier. In: INISTA 2011—2011 international symposium on innovations in intelligent systems and applications, pp 29–33. https://doi.org/10.1109/INISTA.2011.5946064

  9. Farzadnia E, Shirazi H, Nowroozi A (2021) A novel sophisticated hybrid method for intrusion detection using the artificial immune system. J Inf Secur Appl 58(February):102721. https://doi.org/10.1016/j.jisa.2020.102721

    Article  Google Scholar 

  10. Feng DC, Liu ZT, Wang XD, Chen Y, Chang JQ, Wei DF, Jiang ZM (2020) Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach. Constr Build Mater 230:117000. https://doi.org/10.1016/j.conbuildmat.2019.117000

    Article  Google Scholar 

  11. Forrest S, Perelson AS, Allen L, Cherukuri R (1994) Self-nonself discrimination in a computer. In: IEEE computer society symposium on research in security and privacy, pp 202–212. https://doi.org/10.1109/RISP.1994.296580. arXiv:1212.5701

  12. Gao XZ, Ovaska SJ, Wang X (2006) Genetic algorithms-based detector generation in negative selection algorithm. In: 2006 IEEE mountain workshop on adaptive and learning systems, SMCals 2006, pp 133–137. https://doi.org/10.1109/SMCALS.2006.250704

  13. Gao XZ, Ovaska SJ, Wang X (2007) Particle swarm optimization of detectors in negative selection algorithm. In: Conference proceedings—IEEE international conference on systems, man and cybernetics, pp 1236–1242. https://doi.org/10.1109/ICSMC.2007.4413731

  14. Gao XZ, Ovaska SJ, Wang X, Chow MY (2008) A neural networks-based negative selection algorithm in fault diagnosis. Neural Comput Appl 17(1):91–98. https://doi.org/10.1007/s00521-007-0092-z

    Article  Google Scholar 

  15. Gao XZ, Ovaska SJ, Wang X, Chow MY (2009) Clonal optimization-based negative selection algorithm with applications in motor fault detection. Neural Comput Appl 18(7):719–729. https://doi.org/10.1007/s00521-009-0276-9

    Article  Google Scholar 

  16. Goel L (2020) An extensive review of computational intelligence-based optimization algorithms: trends and applications. Soft Comput

  17. Gonazalez F, Dasgupta D, Gomez J (2003) The effect of binary matching rules in negative selection. In: Genetic and evolutionary computation conference, pp 195–206. Springer, Berlin. https://doi.org/10.1007/3-540-45105-6_90

  18. González FA, Dasgupta D (2003) Anomaly detection using real-valued negative selection. Genet Program Evolvable Mach 4(4):383–403. https://doi.org/10.1023/A:1026195112518

    Article  Google Scholar 

  19. Gupta KD, Dasgupta D (2021) Negative selection algorithm research and applications in the last decade: a review. arXiv:2105.06109

  20. He J, Chen W, Li T, Li B, Zhu Y, Huang M (2021) HD-NSA: a real-valued negative selection algorithm based on hierarchy division. Appl Soft Comput 112:107726. https://doi.org/10.1016/j.asoc.2021.107726

    Article  Google Scholar 

  21. Hofmeyr SA, Forrest S (2000) Architecture for an artificial immune system. Evol Comput

  22. Idris I, Selamat A, Omatu S (2014) Hybrid email spam detection model with negative selection algorithm and differential evolution. Eng Appl Artif Intell 28:97–110. https://doi.org/10.1016/j.engappai.2013.12.001

    Article  Google Scholar 

  23. Idris I, Selamat A, Thanh Nguyen N, Omatu S, Krejcar O, Kuca K, Penhaker M (2015) A combined negative selection algorithm-particle swarm optimization for an email spam detection system. Eng Appl Artif Intell 39:33–44. https://doi.org/10.1016/j.engappai.2014.11.001

    Article  Google Scholar 

  24. Irvine U (2021) UCI machine learning repository. [EB/OL]. https://archive.ics.uci.edu/ml/datasets.php. Accessed March 30

  25. Ji Z, Dasgupta D (2004) Real-valued negative selection algorithm with variable-sized detectors. In: GECCO, p 55. http://eprints.uanl.mx/5481/1/1020149995.PDF

  26. Ji Z, Dasgupta D (2006) Applicability issues of the real-valued negative selection algorithms. In: GECCO 2006—genetic and evolutionary computation conference, vol 1, pp 111–118. https://doi.org/10.1145/1143997.1144017

  27. Ji Z, Dasgupta D (2009) V-detector: an efficient negative selection algorithm with “probably adequate” detector coverage. Inf Sci 179(10):1390–1406. https://doi.org/10.1016/j.ins.2008.12.015

  28. Jinyin C, Mengmeng S, Haibin Z (2017) A novel radius adaptive hybrid detector generation algorithm. Optik 142:621–643. https://doi.org/10.1016/j.ijleo.2017.06.034

    Article  Google Scholar 

  29. Karsoliya S (2012) Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int J Eng Trends Technol 3(6):714–717

    Google Scholar 

  30. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) LightGBM: a highly efficient gradient boosting decision tree. In: Advances in neural information processing systems 2017-December (Nips), pp 3147–3155

  31. Luo W, Wang X, Wang X (2007) A novel fast negative selection algorithm enhanced by state graphs. In: International conference on artificial immune systems. Springer, Berlin, , pp 168–181. https://doi.org/10.1007/978-3-540-73922-7_15

  32. Marcot BG, Penman TD (2019) Advances in Bayesian network modelling: integration of modelling technologies. Environ Model Softw 111(2018):386–393. https://doi.org/10.1016/j.envsoft.2018.09.016

    Article  Google Scholar 

  33. Mohapatra S, Khilar PM (2020) Fault diagnosis in wireless sensor network using negative selection algorithm and support vector machine. Comput Intell 36(3):1374–1393. https://doi.org/10.1111/coin.12380

    Article  Google Scholar 

  34. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O’Neill LA, Xavier RJ (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352(6284):427. https://doi.org/10.1126/science.aaf1098

  35. Probst P, Wright MN, Boulesteix AL (2019) Hyperparameters and tuning strategies for random forest. Wiley Interdiscip Rev Data Min Knowl Discov 9(3):1–15. https://doi.org/10.1002/widm.1301

    Article  Google Scholar 

  36. Ranganathan P, Pramesh C, Aggarwal R (2017) Common pitfalls in statistical analysis: measures of agreement. Perspect Clin Res 8(4):187–191. https://doi.org/10.4103/picr.PICR_123_17

    Article  Google Scholar 

  37. Rashid N, Iqbal J, Mahmood F, Abid A, Khan US, Tiwana MI (2018) Artificial immune system-negative selection classification algorithm (NSCA) for four class electroencephalogram (EEG) signals. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2018.00439

    Article  Google Scholar 

  38. Song YY, Lu Y (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 27(2):130–135. https://doi.org/10.11919/j.issn.1002-0829.215044

    Article  Google Scholar 

  39. Tsang IW, Kwok JT, Cheung PM (2005) Core vector machines: fast SVM training on very large data sets. J Mach Learn Res 6:363–392

    MathSciNet  MATH  Google Scholar 

  40. Wang H, Wang KJ, Yu LJ, Li XL (2007) Immune negative selection algorithm with an adjustable threshold based on fuzzy logic. Harbin Gongcheng Daxue Xuebao/J Harbin Eng Univ 28(11):1222–1227

    MATH  Google Scholar 

  41. Wang W, Ren L, Chen L, Ding Y (2019) Intrusion detection and security calculation in industrial cloud storage based on an improved dynamic immune algorithm. Inf Sci 501:543–557. https://doi.org/10.1016/j.ins.2018.06.072

    Article  Google Scholar 

  42. Wen C, Tao L (2017) Parameter analysis of negative selection algorithm. Inf Sci 420:218–234. https://doi.org/10.1016/j.ins.2017.08.062

    Article  Google Scholar 

  43. Xiao X, Li T, Zhang R (2015) An immune optimization based real-valued negative selection algorithm. Appl Intell 42(2):289–302. https://doi.org/10.1007/s10489-014-0599-9

    Article  Google Scholar 

  44. Yang C, Jia L, Chen BQ, Wen HY (2020) Negative selection algorithm based on antigen density clustering. IEEE Access 8:44967–44975. https://doi.org/10.1109/ACCESS.2020.2976875

    Article  Google Scholar 

  45. Zeng J, Liu X, Li T, Liu C, Peng L, Sun F (2009) A self-adaptive negative selection algorithm used for anomaly detection. Prog Nat Sci 19(2):261–266. https://doi.org/10.1016/j.pnsc.2008.06.008

    Article  Google Scholar 

  46. Zhang R, Xiao X (2018) A clone selection based real-valued negative selection algorithm. Complexity. https://doi.org/10.1155/2018/2520940

    Article  Google Scholar 

  47. Zhu F, Chen W, Yang H, Li T, Yang T, Zhang F (2017) A quick negative selection algorithm for one-class classification in big data era. Math Probl Eng. https://doi.org/10.1155/2017/3956415

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (No. 61877045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liang, Y. & Yang, X. NKA: a pathogen dose-based natural killer cell algorithm and its application to classification. J Supercomput 78, 7016–7037 (2022). https://doi.org/10.1007/s11227-021-04133-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04133-4

Keywords

Navigation